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Abstract

The formulation of constraints and the validation of RDF data against these
constraints is a common requirement and a much sought-after feature, particularly
as this is taken for granted in the XML world. Recently, RDF validation as a re-
search field gained speed due to shared needs of data practitioners from a variety
of domains. For constraint formulation and RDF data validation, several languages
exist or are currently developed. Yet, there is no clear favorite and none of the
languages is able to meet all requirements raised by data professionals. Therefore,
further research on RDF validation and the development of constraint languages is
needed.

There are different types of research data and related metadata. Because of the
lack of suitable RDF vocabularies, however, just a few of them can be expressed
in RDF. Three missing vocabularies have been developed to represent all types of
research data and its metadata in RDF and to validate RDF data according to
constraints extractable from these vocabularies.

Data providers of many domains still represent their data in XML, but expect
to increase the quality of their data by using common RDF validation tools. We
propose a general approach to directly validate XML against semantically rich OWL
axioms when using them in terms of constraints and extracting them from XML
Schemas adequately representing particular domains, without having any manual
effort defining constraints.

We have published a set of constraint types that are required by diverse stake-
holders for data applications and which form the basis of this thesis. Each constraint
type, from which concrete constraints are instantiated to be checked on the data,
corresponds to one of the requirements derived from case studies and use cases pro-
vided by various data institutions. We use these constraint types to gain a better
understanding of the expressiveness of solutions, investigate the role that reasoning
plays in practical data validation, and give directions for the further development
of constraint languages.

We introduce a validation framework that enables to consistently execute RDF-
based constraint languages on RDF data and to formulate constraints of any type in
a way that mappings from high-level constraint languages to an intermediate generic
representation can be created straight-forwardly. The framework reduces the rep-
resentation of constraints to the absolute minimum, is based on formal logics, and
consists of a very simple conceptual model with a small lightweight vocabulary. We
demonstrate that using another layer on top of SPARQL ensures consistency regard-
ing validation results and enables constraint transformations for each constraint type
across RDF-based constraint languages.

We evaluate the usability of constraint types for assessing RDF data quality
by collecting and classifying constraints on common vocabularies and validating
15,694 data sets (4.26 billion triples) of research data according to these constraints.
Based on the large-scale evaluation, we formulate several findings to direct the future
development of constraint languages.
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1

Introduction

The Semantic Web [22, 283] is an open knowledge space where knowledge can
be represented and new information can be gained by performing reasoning
over heterogeneous data sources. Linked Data interweaves the Semantic Web
with the World Wide Web of documents [18–21], focuses on the strength of
the Semantic Web to exchange and integrate data from various sources [145],
and thus forms the Giant Global Graph. The notion of Linked (Open) Data
and its principles [144] clearly increased the acceptance – not to say the ex-
citement – of data providers for the underlying Semantic Web technologies.
Breaking down the data to statements and globally unique identifiers for sub-
jects, predicates, and objects facilitates the merging of arbitrary data sets
without conflicts, while the exploitation of links between the identifiers brings
together what belongs together. Early concerns of the data providers regard-
ing stability and trustability of the data have been addressed and largely been
solved, not only by technical means regarding versioning and provenance, but
also by the providers getting accustomed to the open data world with its
peculiarities.

Linked Data, however, is still not the primary means to create, store, and
manage data on the side of the providers. Linked Data is mostly offered as
only one view on the data, a one-way road, disconnected from the internal
data representation. To the obstacles for the full adoption of RDF, possibly
comparable to XML, belongs the lack of accepted ways to formulate (local)
constraints on RDF data and validate the data according to these constraints.

The Common Need of Data Practitioners for RDF Validation

For many data practitioners, data libraries, data archives, and research in-
stitutes embracing the world of Linked Data, the openness and flexibility is
a mixed blessing. For them, the formulation of constraints and the valida-
tion of RDF data against these constraints is a common requirement and a
much sought-after feature, particularly as this is taken for granted in the XML



2 1 Introduction

world. Among the reasons for the success of XML is the possibility to formu-
late fine-grained constraints to be met by the data and to validate data using
powerful systems like Document Type Definition, XML Schema, RELAX NG,
and Schematron.

A typical example is the library domain that co-developed and adopted
Linked Data principles very early. Libraries have a long tradition in developing
and using interoperable data formats. For libraries, the common description
of resources is key business, so the definition of library records describing
books. There are clear rules which information has to be available to describe
a book properly (e.g., ISBN, title, and author), but also how information like
an ISBN number is correctly represented. Libraries seek to make their own
data reusable for general purposes, but also to enrich and interlink their data.
Checking if third-party data meets own requirements or validating existing
data according to new needs for a Linked Data application are among common
case studies for RDF validation. While they appreciate the openness of Linked
Data and the data modeling principles provided by RDF, their data is still
mostly represented in XML and this is unlikely to change soon.

Data practitioners of various domains like the cultural heritage sector and
the social, behavioral, and economic sciences are used to represent their data
in XML. To publish, interlink, and integrate their data, they simply map it
to RDF. It is unlikely, at least in the short to medium term, that they will
completely move to RDF and thereby change their behavior they have been
successful with over decades. Representing data in XML and RDF, however,
allows data practitioners (1) to stay in the generally accepted and proven
XML environment they are familiar with, (2) to benefit from emerging and
promising Semantic Web and Linked Data technologies, and (3) to improve
the quality of their data by using common RDF validation tools.

RDF Validation as Research Field

Recently, RDF validation as a research field gained speed due to common
needs of data practitioners. In 2013, the W3C organized the RDF Validation
Workshop1 [202], where experts from industry, government, and academia
presented and discussed first case studies for constraint formulation and RDF
data validation. Two working groups on RDF validation that follow up on this
workshop have been established in 2014 to develop a language for expressing
constraints on RDF data and defining structural constraints on RDF graphs:
the W3C RDF Data Shapes Working Group2 (40 participants from 24 orga-
nizations) and the Dublin Core Metadata Initiative (DCMI) RDF Application
Profiles Task Group3 (31 persons from 23 organizations).

The DCMI working group bundles the requirements of data institutions of
the cultural heritage sector (mostly from the library domain) and the social,

1 http://www.w3.org/2012/12/rdf-val
2 https://www.w3.org/2014/data-shapes/charter
3 http://wiki.dublincore.org/index.php/RDF-Application-Profiles

http://www.w3.org/2012/12/rdf-val
https://www.w3.org/2014/data-shapes/charter
http://wiki.dublincore.org/index.php/RDF-Application-Profiles
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behavioral, and economic sciences and represents them in the W3C working
group. The intention of the DCMI working group is to (1) gather case stud-
ies from data professionals having RDF validation related problems in their
individual contexts, (2) extract functional use cases out of these case studies,
(3) specify requirements to be fulfilled to adequately solve these problems and
meet the use cases, (4) investigate existing best-practices regarding the cover-
age of these requirements, and (5) identify gaps and recommend best-practices
to close them, i.e., practical solutions for the representation of application pro-
files, including the formulation and checking of data constraints.

In a heterogeneous environment like the Web, there is not necessarily a
one-size-fits-all solution, especially as existing solutions should rather be in-
tegrated than replaced, not least to avoid long and fruitless discussions about
the “best” approach. For constraint formulation and RDF data validation,
several languages exist or are currently developed. The SPARQL Query Lan-
guage for RDF [134], the SPARQL Inferencing Notation (SPIN) [185], the
Web Ontology Language (OWL) [27], Shape Expressions (ShEx) [287], Re-
source Shapes (ReSh) [274], and Description Set Profiles (DSP) [234] are
the six most promising and widely used constraint languages that are most
popular among data practitioners. With its direct support of validation via
SPARQL, SPIN is very popular and certainly plays an important role for fu-
ture developments in this field. Despite the fact that OWL is arguably not
a constraint language, it is widely used in practice as such under the closed-
world and unique name assumptions. In addition to these already existing
constraint languages, the W3C working group currently develops the Shapes
Constraint Language (SHACL) [186], an RDF vocabulary for describing RDF
graph structures. Yet, there is no clear favorite and none of these languages is
able to meet all requirements raised by data practitioners. This is the reason
why further research on RDF validation and the development of constraint
languages is needed.

1.1 Objectives and Structure of the Thesis

Figure 1.1 shows the structure of the thesis, how the chapters are interrelated,
their main contributions, and how they are related to individual research
questions.

Vocabularies for Representing Research Data and its Metadata

The social, behavioral, and economic (SBE) sciences require high-quality data
for their empirical research. For more than a decade, members of the SBE
sciences community have been developing and using a metadata standard,
composed of almost twelve hundred metadata fields, known as the Data Doc-
umentation Initiative (DDI) [93, 94], an XML format to disseminate, manage,
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Fig. 1.1. Structure of the Thesis
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and reuse data collected and archived for research [316]. In XML, the defi-
nition of schemas containing constraints on data and the validation of data
according to these constraints is commonly used to ensure a certain level of
data quality. With the rise of the Web of Data, data professionals and insti-
tutions are very interested in having their data be discovered and used by
publishing their data directly in RDF or at least accurate metadata about
their data to facilitate data integration.

There are different types of research data and related metadata. Because
of the lack of respective RDF vocabularies, however, just a few of them can
be expressed in RDF. We have developed three missing vocabularies (1) to
represent all types of research data and its metadata in RDF and (2) to
validate RDF data against constraints extractable from these vocabularies
(see Chapter 3):

• The DDI-RDF Discovery Vocabulary (DDI-RDF) to support the discovery
of metadata on unit-record data, i.e., data collected about individuals,
businesses, and households.

• Physical Data Description (PHDD), a vocabulary to describe data in tab-
ular format and its physical properties.

• The SKOS Extension for Statistics (XKOS), a vocabulary to describe for-
mal statistical classifications and introduce refinements of SKOS semantic
properties to allow the use of more specific relations between concepts.

RDFication of XML Enabling to use RDF Validation Technologies

There is a huge amount of XML Schemas describing conceptual models about
data in various domains, but compared to XML Schemas there are still only
a few ontologies formally representing the intended semantics of particular
domains. This is the reason why the LOD cloud is still missing conceptual de-
scriptions [169]. In the B2B domain, e.g., there are hundreds of XML Schemas
to encode exchanged XML data, but not many ontologies.

Data practitioners of many domains still represent their data in XML, but
expect to increase the quality of their data by using common RDF validation
tools. In order to be able to directly validate XML data against semantically
rich OWL axioms when using them in terms of constraints and extracting
them from XML Schemas adequately representing certain domains, we pro-
pose on formal logics and the XML Schema meta-model based automatic
transformations of arbitrary XML Schemas and conforming XML documents
into OWL ontologies and corresponding RDF data without any information
loss. This does not cause any additional manual effort, as these constraints
have already been defined by the XML community within underlying XML
Schemas.

As generated ontologies are not conform to the highest quality require-
ments of more sophisticated domain ontologies regarding the intended se-
mantics of given domains, we automatically derive domain ontologies out of
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generated ontologies using manually defined SWRL rules. This way, we (1)
reduce the complexity of generated ontologies and therefore underlying XML
Schemas and (2) further supplement OWL axioms with additional domain-
specific semantic information not or not satisfyingly covered by underlying
XML Schemas.

By evaluating the proposed approach, we verify the hypothesis that the
effort and the time needed to deliver high quality domain ontologies from
scratch by reusing information of already existing XML Schemas properly
delineating particular domains is much less than creating domain ontologies
completely manually and anew. The resulting domain ontologies are as usable
as ontologies that are completely constructed by hand, but with a fraction of
necessary effort (see Chapter 4).

RDF Validation Requirements and Constraint Types

Our work is supposed to lay the ground for subsequent activities in the W3C
and DCMI working groups. We propose to relate existing solutions to case
studies and use cases by means of requirements, extracted from the latter and
fulfilled by the former. We therefore collected the findings of the RDF Vali-
dation Workshop and the working groups and initiated a community-driven
database of requirements to formulate constraints and validate RDF data.
Additionally, we added requirements from other sources, particularly in the
form of constraint types that are supported by existing approaches, e.g., those
expressible in OWL 2. The intention of this database is to collaboratively col-
lect case studies provided by various data institutions, use cases, requirements,
and solutions in a comprehensive and structured way. The database is pub-
licly available at http://purl.org/net/rdf-validation, continuously extended,
and open for further contributions.

Laying the ground on cooperatively collected case studies and relating so-
lutions to case studies and use cases by means of requirements makes sure
that (1) commonly approved requirements cover real world needs of data pro-
fessionals having RDF validation related problems and (2) the further devel-
opment of constraint languages is based on universally accepted requirements.

Based on our work in these working groups and the jointly identified re-
quirements, we have published by today 81 types of constraints that are re-
quired by various stakeholders for data applications and which form the basis
of this thesis. Each constraint type, from which concrete constraints are in-
stantiated to be checked on the data, corresponds to a specific requirement
in the database. We use this collection of constraint types to gain a better
understanding of the expressiveness of existing and currently developed solu-
tions, identify gaps that still need to be filled, recommend possible solutions
for their elimination, and give directions for the further development of con-
straint languages (see Chapter 5).

http://purl.org/net/rdf-validation
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Consistent Validation across RDF-based Constraint Languages

SPARQL is generally seen as the method of choice to validate RDF data ac-
cording to certain constraints, although it is not ideal for their formulation.
In contrast, high-level constraint languages like ShEx, ReSh, DSP, OWL, and
SHACL are comparatively easy to understand and enable to formulate con-
straints in a more concise way, but either lack an implementation to actually
validate RDF data on constraints expressed in these languages or are based
on different implementations.

We use SPIN, a SPARQL-based way to formulate and check constraints,
as basic validation framework and present a general approach how RDF-based
constraint languages can be executed on RDF data in a consistent way, i.e.,
how to consistently implement the validation of RDF data against constraints
of any constraint type in any RDF-based language using SPARQL as an inter-
mediate language. This is necessary since (1) multiple implementations using
distinct underlying technologies hamper the interoperability of constraint lan-
guages and (2) full and differing implementations of several languages are hard
to maintain for solution providers. We claim and provide evidence from litera-
ture that constraints of each type in any RDF-based language can be checked
with plain SPARQL as low-level execution language.

We have developed a validation environment which is online available at
http://purl.org/net/rdfval-demo and which can be used to validate RDF data
on constraints of any type expressed in arbitrary RDF-based constraint lan-
guages. To demonstrate the general applicability of the approach, we provide
implementations for (1) all OWL 2 and DSP language constructs, (2) all
constraint types which are expressible in OWL 2 and DSP, and (3) major
constraint types representable by ReSh and ShEx (see Chapter 6).

Validation Framework for RDF-based Constraint Languages

Several solutions to formulate constraints and validate RDF data against con-
straints exist or are currently developed. However, none of the languages, we
consider being high-level constraint languages, is able to meet all require-
ments raised by data practitioners, i.e., enables to express constraints of all
constraint types.

We generalize from our experience completely implementing OWL 2 and
DSP as well as major constructs of other high-level constraint languages and
gained from the analysis of the identified constraint types and introduce a
general framework, an abstraction layer that enables to formulate constraints
of any type in a way that mappings from high-level constraint languages to
the intermediate generic representation can be created more or less straight-
forwardly. The proposed framework reduces the representation of constraints
to the absolute minimum, is based on formal logics, and consists of a very
simple conceptual model with a small lightweight vocabulary and constraining
elements.

http://purl.org/net/rdfval-demo
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We demonstrate that using another layer on top of SPARQL simplifies the
implementation of constraint languages and ensures for any constraint type
that (1) whenever semantically equivalent constraints of the same type are
checked on RDF data they point out the same set of violations regardless of
the language used to express them and (2) semantically equivalent constraints
of the same type can be transformed from one RDF-based constraint language
to another via the intermediate representation (see Chapter 7).

The Role of Reasoning for RDF Validation

The constraint types form the basis to investigate the role that reasoning and
different semantics play in practical data validation, when reasoning is bene-
ficial for RDF validation, and how to overcome the major shortcomings when
validating RDF data by performing reasoning prior to validation. For each
constraint type, we investigate (1) if reasoning may be performed prior to
validation to enhance data quality, (2) how efficient in terms of runtime vali-
dation is performed with and without reasoning, and (3) if validation results
differ when different semantics is assumed. Using these findings, we deter-
mine for the most common constraint languages which reasoning constraint
types they enable to express and give directions for the further development
of constraint languages (see Chapter 8).

Evaluating the Usability of Constraint Types for Assessing RDF
Data Quality

A concrete constraint is instantiated from one of the 81 constraint types and
defined for a specific vocabulary. We gain a better understanding about the
role of certain constraint types for determining the quality of RDF data and
therefore evaluate the usability of identified constraint types for assessing RDF
data quality by (1) collecting 115 constraints on common vocabularies, either
from the vocabularies themselves or from domain experts, (2) classifying these
constraints, and (3) validating 15,694 data sets (4.26 billion triples) of research
data, obtained from 33 SPARQL endpoints, against these constraints. Based
on the large-scale evaluation, we formulate several findings to gain insights
and make recommendations to direct the further development of constraint
languages (see Chapter 9).

1.2 Research Questions

Research Question 1 Which types of research data and related metadata
are not yet representable in RDF and how to adequately model them to be able
to validate RDF data against constraints extractable from these vocabularies?
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The social, behavioral, and economic (SBE) sciences require high-quality
data for their empirical research. There are different types of research data
and related metadata. Because of the lack of respective RDF vocabularies,
however, just a few of them can be expressed in RDF. Having these missing vo-
cabularies enables (1) to represent all types of research data and its metadata
in RDF and (2) to validate RDF data according to constraints extractable
from these vocabularies. The types of research data and related metadata
which are not yet expressible in RDF are metadata on (1) unit-record data,
(2) tabular data, and (3) formal statistical classifications.

The type of data most often used in research within the SBE sciences is
unit-record data, i.e., data collected about individuals, businesses, and house-
holds in form of responses to studies or taken from administrative registers
such as hospital records and registers of births and deaths. The range of unit-
record data is very broad - including census, education, and health data as
well as business, social, and labor force surveys. This type of research data is
held within data archives or data libraries after it has been collected, so that
it may be reused by future researchers.

Data in tabular format can be represented in form of records with character-
separated values (CSV) or with fixed length. CSV files are two-dimensional
tables about SBE sciences variables such as sex or age used to capture indi-
vidual values for persons.

Formal statistical classifications like the International Standard Classifi-
cation of Occupations are hierarchical concept schemes including concepts,
associated numeric codes, short textual labels, definitions, and longer descrip-
tions that include rules for their use. There is a common need to represent the
structure and textual properties of classifications as well as different types of
relations between classifications and concepts and among concepts.

Research Question 2 How to directly validate XML data on semantically
rich OWL axioms using common RDF validation tools when XML Schemas,
adequately representing particular domains, have already been designed?

Traditionally, domain experts closely work with ontology engineers to de-
sign OWL domain ontologies manually from scratch which requires lots of
time and effort. In many cases, however, XML Schemas adequately describing
certain domains have already been produced by the XML community and all
the information contained in XML Schemas can therefore be reused as a basis
to design more sophisticated domain ontologies. Saved time and work could be
used more effectively to enrich the knowledge representation of given domains
with additional domain-specific semantic information not or not satisfyingly
covered by already existing XML Schemas.

Data practitioners of many domains still represent their data in XML,
but expect to increase the quality of their data by using common RDF valida-
tion tools. After automatically transforming XML Schemas and corresponding
XML documents into OWL ontologies and conforming RDF data, we are able
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to directly validate the data against automatically extracted and semanti-
cally rich OWL axioms when using them in terms of constraints. This does
not cause any additional manual effort as these constraints have already been
defined within underlying XML Schemas. Such constraints could ensure that
(1) particular XML elements like the title of a book only contain plain text,
(2) specific XML attributes such as publication year only include positive
numbers, or (3) an XML element like book only contains listed XML elements
(e.g., isbn, title, and author) in a predefined order.

As structures of XML Schemas may be quite complex, it has to be ensured
that any XML Schema, i.e., arbitrary complex structures of XML Schemas,
can be converted without any information loss. This means that all the infor-
mation about the terminology of individual domains, the implicit semantics
of XML Schema constructs (e.g., class memberships of XML elements and
relationships between XML elements), and the syntactic structure of sets of
XML documents has to be maintained and modeled with correct semantics
in form of suitable OWL axioms.

A main difference between the structural level of XML and the semantic
level of RDF is that XML elements are explicitly ordered and RDF is set-
oriented. As XML Schemas are commonly used to specify structural relation-
ships of objects in data-centric XML documents, all the structural information
like sequence and choice, determining the syntactic structure of sets of XML
documents, has to be preserved. The XML Schema construct sequence, e.g., is
used to specify the explicit order of XML elements contained in parent XML
elements and the XML Schema construct choice specifies an exclusive or of
its operands.

Research Question 3 Which types of constraints must be expressible by
constraint languages to meet all collaboratively and comprehensively identified
requirements to formulate constraints and validate RDF data?

Our work is supposed to establish a stable foundation for subsequent activ-
ities in the working groups on RDF validation. We therefore investigate ways
encouraging the collaborative identification of requirements to formulate con-
straints and validate RDF data against constraints in a comprehensive and
structured way within these working groups and beyond.

Just like for the development of standards in general, as in software, we
take case studies and use cases as a starting point for the advancement of
constraint languages. In case studies, the full background of specific scenarios
is described, where the standard or the software is to be applied. Use cases
are smaller units where certain actions or typical user inquiries are described.
They can be extracted from and thus linked to case studies, but often they
are defined directly.

Requirements are extracted out of use cases. They form the basis for de-
velopment and are used to evaluate existing solutions. Via requirements, so-
lutions get linked to use cases and case studies and it becomes visible which
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solutions can be used in a given scenario and what drawbacks might be faced.
Our goal is to maintain a set of distinct requirements. Only this way it is
possible to evaluate solutions regarding their suitability for use cases and case
studies. Use cases can be shared between case studies as well, but this is
harder to maintain as use cases are less formal and often more case specific
than a requirement. Another goal is a relative stability regarding the require-
ments, which then can prove to be useful to mediate between data and solution
providers.

Laying the ground on case studies collected from various data practitioners
and relating solutions to case studies and use cases by means of requirements,
extracted from the latter and fulfilled by the former, makes sure that (1)
commonly approved requirements cover real world needs of data professionals
having RDF validation related problems and (2) the further development of
constraint languages is based on universally accepted requirements.

We determine which types of constraints must be expressible by constraint
languages to satisfy each of the jointly identified requirements and use this
set of constraint types to gain a better understanding of the expressiveness
of already existing and currently evolved solutions, identify gaps that still
need to be filled, recommend possible solutions for their elimination, and give
directions for the further development of constraint languages.

Research Question 4 How to ensure for any constraint type that (1) RDF
data is consistently validated against semantically equivalent constraints of the
same constraint type across RDF-based constraint languages and (2) seman-
tically equivalent constraints of the same constraint type can be transformed
from one RDF-based constraint language to another?

None of the solutions, we consider as high-level constraint languages, is
able to meet all requirements raised by data practitioners, i.e., enables to
express each of the 81 identified constraint types.

High-level constraint languages like ShEx, ReSh, DSP, OWL, and SHACL
either lack an implementation to actually validate RDF data according to
constraints expressed in these languages or are based on different implemen-
tations. This leaves the first subordinate research question how to execute
RDF-based constraint languages on RDF data in a consistent way, i.e., how to
consistently implement the validation of RDF data against constraints of any
constraint type expressed in any RDF-based language. This is necessary since
(1) multiple implementations using distinct underlying technologies hamper
the interoperability of constraint languages and (2) full and differing imple-
mentations of several languages are hard to maintain for solution providers.

4.1 How to consistently validate RDF data against constraints of any con-
straint type expressed in any RDF-based constraint language?

The constraint type minimum qualified cardinality restrictions can be in-
stantiated to formulate the concrete constraint that publications must have
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at least one author which must be a person. Equivalent constraints of that
type having exactly the same meaning are expressible in different languages:

1 OWL 2: :Publication rdfs:subClassOf
2 [ a owl:Restriction ;
3 owl:minQualifiedCardinality 1 ;
4 owl:onProperty :author ;
5 owl:onClass :Person ] .
6

7 ShEx: :Publication { :author @:Person{1, } }
8

9 ReSh: :Publication a rs:ResourceShape ; rs:property [
10 rs:propertyDefinition :author ;
11 rs:valueShape :Person ;
12 rs:occurs rs:One-or-many ; ] .
13

14 DSP: [ dsp:resourceClass :Publication ; dsp:statementTemplate [
15 dsp:minOccur 1 ;
16 dsp:property :author ;
17 dsp:nonLiteralConstraint [ dsp:valueClass :Person ] ] ] .
18

19 SHACL: :PublicationShape
20 a sh:Shape ;
21 sh:scopeClass :Publication ;
22 sh:property [
23 sh:predicate :author ;
24 sh:valueShape :PersonShape ;
25 sh:minCount 1 ; ] .
26 :PersonShape
27 a sh:Shape ;
28 sh:scopeClass :Person .

When we fully implemented OWL 2 and DSP as well as major constructs
of other high-level constraint languages using SPARQL as intermediate lan-
guage and mappings to SPIN, a SPARQL-based way to specify and check
constraints, we found that many mappings actually resemble each other; par-
ticularly the mappings of the same constraint type in different languages, but
also the mappings of different constraint types, though the latter only on
a very superficial, structural level. In the example, it can be seen that the
expressions of the high-level constraint languages are comparatively similar -
there seems to be a pattern, a common way to express this type of constraints.

We build on the experience gained from mapping several constraint lan-
guages to SPIN and the analysis of the identified constraint types to create
an intermediate layer, a framework that is able to describe the mechanics of
all constraint types in a way that mappings from high-level constraint lan-
guages to this intermediate generic representation can be created more or less
straight-forwardly.

The basic idea of our framework is very simple: (1) we aim at reducing the
representation of constraints to the absolute minimum that has to be provided
in a mapping to SPIN and (2) we want to be able to express constraints of any
constraint type in order to meet all requirements raised by data practitioners:

4.2 How to represent constraints of any constraint type and how to reduce the
representation of constraints of any constraint type to the absolute minimum?
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Even with an upcoming W3C recommendation for a new constraint lan-
guage, it can be expected that several languages will be used in practice
in future – consider the situation in the XML world, where a standardized
schema language was available from the beginning and yet additional ways
to formulate and check constraints have been created. Therefore, semantically
equivalent constraints of the same constraint type represented in different lan-
guages will exist, which raises the two main subordinate research questions:

4.3 How to ensure for any constraint type that RDF data is consistently val-
idated against semantically equivalent constraints of the same constraint type
across RDF-based constraint languages?

4.4 How to ensure for any constraint type that semantically equivalent con-
straints of the same constraint type can be transformed from one RDF-based
constraint language to another?

Even though SPIN provides a convenient way to represent constraint viola-
tions and validate data against constraints, the implementation of a high-level
constraint language still requires a tedious mapping to SPIN with a certain
degree of freedom how constraints of a certain type are checked and how
violations of constraints of a particular type are represented. Checks of se-
mantically equivalent constraints of the same type should detect the same
set of violations regardless of the used language. This means that whenever
semantically equivalent constraints in different languages are checked on RDF
data they should point out the same violations.

As there is no standard way to define constraints, semantically equiva-
lent constraints of the same type are expressible by a variety of constraint
languages - each of them different in syntax and semantics. Transformations
of semantically equivalent constraints of the same type from one language to
another are important (1) to enhance the interoperability of constraint lan-
guages, (2) to resolve misunderstandings and ambiguities in interpretations of
constraints, and (3) to avoid the necessity to understand several languages.

Furthermore, by providing just one SPIN mapping for each constraint type
independently of concrete languages, we simplify implementing constraint
types for both existing and newly developed constraint languages.

Research Question 5 What is the role reasoning plays in practical data
validation and for which constraint types reasoning may be performed prior to
validation to enhance data quality?

The set of constraint types forms the basis to investigate the role that
reasoning and different semantics play in practical data validation, when rea-
soning is beneficial for RDF validation, and how to overcome the major short-
comings when validating RDF data by performing reasoning prior to valida-
tion.
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We examine the effect of reasoning to the validation process for each con-
straint type, i.e., we investigate for each constraint type if reasoning may
be performed prior to validation to enhance data quality either by resolving
violations or by raising valuable violations and solving them.

We furthermore examine the effects of reasoning on the performance of
constraint types. Therefore, we investigate for each constraint type how effi-
cient in terms of runtime validation is performed with and without reasoning.

Validation and reasoning assume different semantics which may lead to
different validation results when applied to particular constraint types. Rea-
soning requires the open-world assumption (OWA) with the non-unique name
assumption (nUNA), whereas validation is classically based on the closed-
world assumption (CWA) and the unique name assumption (UNA). There-
fore, we investigate for each constraint type if validation results differ (1) if
the CWA or the OWA and (2) if the UNA or the nUNA is assumed, i.e., we
examine for each constraint type (1) if it depends on the CWA and (2) if it
depends on the UNA.

We use these findings to determine which reasoning constraint types the
most common constraint languages enable to express and give directions for
the further development of constraint languages by revealing which languages
do not cover certain constraint types for which reasoning can be done prior
to validation to improve data quality.
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Foundations for RDF Validation

In this chapter, we lay the ground for the subsequent chapters of this thesis
and outline the results of previous research in the fields of RDF and XML
validation.

As it is similar to our effort collaboratively collecting RDF validation re-
lated case studies, use cases, requirements, and solutions in a comprehensive
and structured way, we evaluate social requirements engineering regarding a
possible reuse, i.e., the use of social software to support collaborative require-
ments engineering (see Section 2.1).

In Section 2.2, we explain (1) what a schema language for XML is, (2) how
XML validation is defined, and (3) in form of a complete and intuitive run-
ning example which features the major schema languages DTD, XML Schema,
RELAX NG, Schematron, and the proof of concept schema language Exam-
plotron possess.

To be able to directly validate XML using common RDF validation tools
against semantically rich OWL axioms when using them in terms of con-
straints and extracting them from XML Schemas adequately representing
particular domains, we propose on formal logics and the XML Schema meta-
model based automatic transformations of XML Schemas and conforming
XML documents into OWL ontologies and corresponding RDF data. Section
2.3 serves to lay the theoretical background for meta-model based model trans-
formations by (1) comprehensively comparing XML/XML Schema with RD-
F/OWL, (2) giving an introduction to meta-modeling by means of the Meta
Object Facility, and (3) providing an in-depth overview of existing approaches
translating XML/XML Schema into RDF/OWL and comparing them in de-
tail with the suggested approach.

We generalize from uni-directional transformations of XML Schema mod-
els into OWL models to bidirectional transformations between models of any
meta-model such as OWL, XML Schema, relational database schemas, Java,
and UML. Meta-model based transformations of arbitrary models to OWL
models enable to convert any data to RDF and to validate any data accord-
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ing to constraints extractable from models of arbitrary meta-models using
common RDF validation tools.

In Section 2.4, we (1) define the term RDF validation, (2) introduce current
languages for the formulation of constraints and the validation of RDF data
against these constraints, and (3) give a preview of the constraint language
currently developed by the W3C working group.

Finally, we (1) define what semantics is and provide intuitive examples
for each semantic assumption, (2) compare the underlying semantics for RDF
and XML validation on the one side and OWL reasoning on the other side,
and (3) explain why OWL can be considered as a constraint language under
the same semantics adopted when validating RDF data (see Section 2.5).

2.1 Social Requirements Engineering

We collected the findings of the DCMI and W3C working groups on RDF
validation and initiated a community-driven publicly available database with
the intention to collaboratively collect case studies, use cases, requirements,
and solutions in a comprehensive and structured way (see Chapter 5).

Requirements engineering is recognized as a crucial part of project and
software development processes [15, 16, 158, 256]. Similar to our collaborative
effort, [209] propose social requirements engineering, i.e., the use of social
software like wikis to support collaborative requirements engineering. Their
approach focuses on simplicity and supports in particular the early phases
of requirements engineering with many distributed participants and mainly
informal collaboration. They emphasize the social experience of developing
requirements for software systems: Stakeholders are enabled to collaboratively
collect, discuss, improve, and structure requirements. Under the supervision of
experts, the requirements are formulated in natural language and are improved
by all participants step by step. Later on, experienced engineers may clean
and refine requirements. As basis for their work, they developed a generic
approach (Softwiki) using semantic technologies and the SWORE ontology1

for capturing requirements relevant information semantically [210].
We evaluated the implementation and the ontology regarding a possible

reuse, but it turned out that Softwiki focuses clearly on the requirements
within a traditional software development process, while we need a broader
view including case studies, use cases, and various implementing solutions.
Nevertheless we will reuse parts of the SWORE ontology and include links
wherever possible.

1 The SWORE ontology and a prototypical implementation of the approach is
online available at: http://aksw.org/Projects/SoftWiki.html

http://aksw.org/Projects/SoftWiki.html
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2.2 XML Validation

In this section, we explain (1) what a schema language for XML is, (2) how
XML validation is defined, and (3) in form of a complete and intuitive run-
ning example which features the major schema languages DTD, XML Schema,
RELAX NG, Schematron, and the proof of concept schema language Exam-
plotron possess. In-depth comparisons of major schema languages are pro-
vided by [204, 308]. An exhaustive list of minor schema languages would also
include schema languages like (1) the Document Structure Definition Lan-
guage (DSDL)2 [166], a schema language for XML and SGML to enrich the
capabilities of DTD with some datatyping and occurrence features from other
schema languages, (2) xlinkit [233], a first-order logic-based rule language for
checking link consistency, and (3) the minimal schema language Hook [172]
which is based on partial ordering and which is even more terse than DTD.

All schema languages define transformations applied to a class of XML
instance documents. XML Schemas, e.g., should be thought of as transforma-
tions taking an XML document as input and generating a validation report
which includes at least a return code reporting whether the document is valid.
One important consequence of realizing that XML Schemas define transfor-
mations is that one should consider general purpose transformation languages
like XSLT and APIs as alternatives when choosing a schema language.

An XML document conforming to a particular schema is considered to be
valid, and the process of checking that conformance is called validation. We
can differentiate between at least four levels of validation enabled by schema
languages: (1) markup or structure validation to check document structures,
(2) content or datatype validation to check if individual leaf nodes of an
XML tree correspond to certain datatypes, (3) integrity or link validation
to check links between nodes within a document or between documents, and
(4) arbitrary additional business rules. Validating markup and datatypes are
the most powerful validation levels. Link validation, in particular between
documents, is poorly covered by current schema languages [308].

2.2.1 Document Type Definition (DTD)

One of the major schema languages is Document Type Definition (DTD)
[60], a simplified version of the Standard Generalized Markup Language
(SGML) [160], a meta-language used for defining markup languages. A DTD
schema describes the structure of a class of XML documents via element and
attribute-list declarations. Element declarations name the allowable set of el-
ements within XML documents of a particular class, and specify whether and
how sequences of declared elements and of character data may be contained
within each element. Attribute-list declarations name the allowable set of at-
tributes for each declared element, including the types of attribute values and
an explicit set of valid attribute values.

2 http://dsdl.org

http://dsdl.org
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Schema languages enable to express the following constraints on XML
documents of a certain class: (1) The element library must be the root ele-
ment of XML documents of the specified class of XML documents. (2) The
element library contains the child elements book and author in exactly this
order (3) The element library must have at least one child element book. (4)
The element library may have multiple child elements author. (5) The element
library cannot have any attributes. (6) The element book contains the child
elements isbn, title, and author-ref in exactly this order (7) The element book
must exactly have one child element isbn. (8) The element book must exactly
have one child element title. (9) The element book may have multiple child
elements author-ref. (10) The element book must exactly have one attribute
id. (11) Values of the attribute id of the element book must be unique within
the XML document (12) The element author-ref must exactly have one at-
tribute id. (13) The element author-ref cannot have any child elements or text
content. (14) The element author must exactly have one child element name.
(15) The element author must exactly have one attribute id. (16) Values of
the attribute id of the element author must be unique within the XML docu-
ment (17) The element isbn can only contain text content. (18) The element
isbn cannot have any attributes. (19) The element title can only contain text
content. (20) The element title cannot have any attributes. (21) The element
name can only contain text content. (22) The element name cannot have any
attributes. Each of these constraints is representable in a DTD schema:

1 DTD:
2 <!ELEMENT library (book+, author*)>
3

4 <!ELEMENT book (isbn, title, author-ref*)>
5 <!ATTLIST book
6 id ID #REQUIRED
7 >
8

9 <!ELEMENT author-ref EMPTY>
10 <!ATTLIST author-ref
11 id IDREF #REQUIRED
12 >
13

14 <!ELEMENT author (name)>
15 <!ATTLIST author
16 id ID #REQUIRED
17 >
18

19 <!ELEMENT isbn (#PCDATA)>
20 <!ELEMENT title (#PCDATA)>
21 <!ELEMENT name (#PCDATA)>

The XML document below satisfies all these constraints represented by
major schema languages:

1 XML:
2 <library>
3 <book id="_978-0152023980">
4 <isbn>978-0152023980</isbn>
5 <title>The Little Prince</title>
6 <author-ref id="Antoine-de-Saint-Exupéry"/>
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7 </book>
8 <author id="Antoine-de-Saint-Exupéry">
9 <name>Antoine de Saint-Exupéry</name>

10 </author>
11 </library>

2.2.2 XML Schema (XSD)

By replacing DTD as the way in which XML documents are described and
validated, XML Schema (XSD) [23, 108, 304] was introduced as the primary
schema language to specify and constrain the syntactic structure of a set of
XML documents and to determine the terminology of particular domains of
interest [76, 310, 322].

The main reasons why the W3C developed a new schema language are: (1)
DTD does not support namespaces. XSD, in contrary, enables to validate XML
documents based on namespaces which allows for the distinction between iden-
tical terms being used in different contexts. (2) XSD offers a datatyping system
which is richer than the DTD datatyping system. In particular, XSD defines a
greater and more complex set of datatypes (such as booleans, numbers, dates,
times, and currencies), the datatype system does not only apply to attributes,
and users can define their own datatypes [131, 325].

XML-Data, XDR, DCD, SOX, and DDML influenced the W3C XML
Schema Working Group when developing the W3C recommendation of XSD.
Finally, XSD became the only surviving member of this family of schema
languages. XML-Data [201] included most of the basic XSD concepts. XML-
Data Reduced (XDR) [114] served to refine and subset those ideas down to
a more manageable size in order to allow faster progress towards adopting
a new schema language for XML. Document Content Description for XML
(DCD) [59], a means for specifying rules covering the structure and content
of XML documents, expressed a subset of XML-Data in a way that is consis-
tent with RDF. Schema for Object-Oriented XML (SOX) [92] was influenced
by OOP language design and included concepts like interface and implemen-
tation. The purpose of the Document Definition Markup Language (DDML)
[58] was to encode the logical (as opposed to physical) content of DTDs in
an XML document. DDML made a clear distinction between structures and
data.

XSDs basically consist of element declarations, attribute declarations, sim-
ple type definitions, and complex type definitions. These declarations and
definitions describe the syntactic structure of XML documents, that means
which elements, attributes, and types are allowed or required as the content
of elements and in which order. An XSD, which incorporates the constraints
of the running example, could be:

1 XML Schema:
2 <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
3 <xsd:element name="library">
4 <xsd:complexType>
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5 <xsd:sequence>
6 <xsd:element name="book" maxOccurs="unbounded">
7 <xsd:complexType>
8 <xsd:sequence>
9 <xsd:element name="isbn" type="xsd:string"/>

10 <xsd:element name="title" type="xsd:string"/>
11 <xsd:element name="author-ref"
12 minOccurs="0" maxOccurs="unbounded">
13 <xsd:complexType>
14 <xsd:attribute name="id" type="xsd:IDREF"
15 use="required"/>
16 </xsd:complexType>
17 </xsd:element>
18 </xsd:sequence>
19 <xsd:attribute name="id" type="xsd:ID" use="required"/>
20 </xsd:complexType>
21 </xsd:element>
22 <xsd:element name="author" minOccurs="0" maxOccurs="unbounded">
23 <xsd:complexType>
24 <xsd:sequence>
25 <xsd:element name="name" type="xsd:string"/>
26 </xsd:sequence>
27 <xsd:attribute name="id" type="xsd:ID" use="required"/>
28 </xsd:complexType>
29 </xsd:element>
30 </xsd:sequence>
31 </xsd:complexType>
32 </xsd:element>
33 </xsd:schema>

2.2.3 Regular Language for XML Next Generation (RELAX NG)

The Regular Language for XML Next Generation (RELAX NG)3 [81] is a
grammar-based schema language for XML. The key features of RELAX NG
are: (1) it is closer to a description of XML instance documents in ordinary
English and simpler than XSD,4 (2) it is both easy to learn and use for schema
creators and easy to implement for software developers, (3) it has both an
XML syntax and a compact non-XML syntax, (4) it has a solid theoretical
basis, (5) it supports XML namespaces, (6) it treats attributes uniformly with
elements, (7) it has unrestricted support for unordered and mixed content, and
(8) it can partner with a separate datatyping language such as XSD [311].5

RELAX NG is the result of the merger of RELAX and TREX. The Regular
Language Description for XML6 (RELAX) [164] is both simple and built on a
solid mathematical foundation. Tree Regular Expressions for XML (TREX)7

[80] is basically the type system of XDuce with an XML syntax and additional
features. XDuce8 [155, 156] is a statically typed programming language that
is specifically designed for processing XML data. Although its purpose is not

3 http://relaxng.org
4 Article providing an in-depth comparison between RELAX NG and XSD, cf. [309]
5 Article discussing aspects of the design of RELAX NG including the treatment

of attributes, datatyping, mixed content, and unordered content, cf. [79]
6 http://www.xml.gr.jp/relax
7 http://thaiopensource.com/trex
8 http://xduce.sourceforge.net

http://relaxng.org
http://www.xml.gr.jp/relax
http://thaiopensource.com/trex
http://xduce.sourceforge.net


2.2 XML Validation 21

to be a schema language, its typing system has influenced the further devel-
opment of schema languages. The primary concept in TREX is the pattern.
A TREX pattern, which is itself an XML document, specifies a pattern for
the structure and content of an XML document to identify a class of XML
documents consisting of those documents that match the pattern. A RELAX
NG schema including the constraints of the running example could be:

1 RELAX NG:
2 <grammar
3 xmlns="http://relaxng.org/ns/structure/1.0"
4 datatypeLibrary="http://www.w3.org/2001/XMLSchema-datatypes">
5 <start><choice><ref name="library"/></choice></start>
6 <define name="library">
7 <element name="library">
8 <oneOrMore><ref name="book"/></oneOrMore>
9 <zeroOrMore><ref name="author"/></zeroOrMore>

10 </element>
11 </define>
12 <define name="book">
13 <element name="book">
14 <ref name="id-attribute"/>
15 <ref name="isbn"/>
16 <ref name="title"/>
17 <zeroOrMore>
18 <element name="author-ref">
19 <attribute name="id"><data type="IDREF"/></attribute>
20 <empty/>
21 </element>
22 </zeroOrMore>
23 </element>
24 </define>
25 <define name="id-attribute" >
26 <attribute name="id"><data type="ID"/></attribute>
27 </define>
28 <define name="isbn">
29 <element name="isbn"><text/></element>
30 </define>
31 <define name="title">
32 <element name="title"><text/></element>
33 </define>
34 <define name="author">
35 <element name="author">
36 <attribute name="id"><data type="ID"/></attribute>
37 <element name="name"><text/></element>
38 </element>
39 </define>
40 <define name="name">
41 <element name="name"><text/></element>
42 </define>
43 </grammar>

2.2.4 Schematron

Schematron is a schema language offering an expressive power that DTD,
XSD, and RELAX NG can’t match. If rules have to be checked that go beyond
checking the pure syntactic structure of XML documents, so-called secondary-
level validation tools like Schematron9 [167] have to be introduced to overcome

9 http://www.schematron.com
http://xml.ascc.net/resource/schematron/schematron.html

http://www.schematron.com
http://xml.ascc.net/resource/schematron/schematron.html
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these limitations when validating XML [312]. Examples of constraints which
cannot be specified by means of DTD, XSD, or RELAX NG are: (1) If an
element has a specific value as content, then certain child elements must be
present. (2) A start date must be earlier than or equal to an end date. (3) If
an element has attribute a, it must also have attribute b. (4) If an element
has a parent a, then it must have an attribute b.10

Most schema languages for XML rely on regular grammars when defin-
ing constraints, a fundamental paradigm in the design of these languages.
Schematron, on the other hand, is an XPath/XSLT-based schema language
for defining context dependent validation rules and validating XML docu-
ments according to them. Schematron relies almost entirely on XPath query
patterns for defining these rules. To write a full schema with Schematron, a
schema designer needs to take care to include all the rules required to qualify
the structure of a particular set of XML documents [253].

A unique feature of Schematron is its user-centric approach which enables
to raise user-friendly error messages rather than standard error messages gen-
erated by a schema processor. This allows to document individual patterns in
a schema and to give very direct feedback to users.

Schematron doesn’t directly support structure or datatype validation,
but a schema author may write rules which implement these structure and
datatype checks. Even though the features of schema languages for XML are
more complementary than overlapping, there is room for interesting combi-
nations with Schematron. The combination of XSD and Schematron enables
the use of each language for the purpose for which it has been designed: struc-
ture and datatype validation for XSD and defining rules for Schematron. A
possible combination of RELAX NG, XSD, and Schematron would be to use
RELAX NG for validating the structure, XSD for validating datatypes, and
Schematron for formulating rules [241].

The partial Schematron schema below shows the power of Schematron to
define additional constraints not expressible by DTD, XSD, or RELAX NG,
such as to check if values of the attribute id of the element book are derived
from the text content of its child element isbn:

1 Schematron:
2 <sch:schema xmlns:sch="http://purl.oclc.org/dsdl/schematron">
3 <sch:pattern>
4 <sch:rule context="/">
5 <sch:assert test="library">library must be the root element</sch:assert>
6 </sch:rule>
7 <sch:rule context="/library">
8 <sch:assert test="book">at least 1 book</sch:assert>
9 <sch:assert test="not(@*)">library cannot have any attributes</sch:assert>

10 </sch:rule>
11 <sch:rule context="/library/book">
12 <sch:assert test="not(following-sibling::book/@id=@id)">
13 book ids must be unique within the XML document
14 </sch:assert>

10 cf. http://www.xmlmind.com/xmleditor/ distrib/doc/xmltool/xsd structure
limitations.html

http://www.xmlmind.com/xmleditor/_distrib/doc/xmltool/xsd_structure_limitations.html
http://www.xmlmind.com/xmleditor/_distrib/doc/xmltool/xsd_structure_limitations.html
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15 <sch:assert test="@id=concat(’_’, isbn)">
16 book ids must be derived from the text content of isbn
17 </sch:assert>
18 </sch:rule>
19 <sch:rule context="/library/*">
20 <sch:assert test="name()=’book’ or name()=’author’">
21 allowed child elements of library: book, author
22 </sch:assert>
23 </sch:rule>
24 </sch:pattern>
25 </sch:schema>

2.2.5 Examplotron

Classical schema languages such as DTD, XSD, RELAX NG, or Schema-
tron rely on a modeling of either the structure (and eventually the datatypes)
that a document must follow to be considered as valid or on rules that need
to be checked. This modeling relies on specific XML serialization syntaxes,
needed to be understood and very different from the instance documents.

Starting from the observation that (1) XML documents are usually much
easier to understand than their schemas describing and validating them and
that (2) schema languages often need to give examples of XML documents
to help human readers to understand their syntax, Examplotron has been
proposed.

Examplotron [313] is a proof of concept to define a lightweight schema lan-
guage that is based on XML example trees. Examplotron uses document in-
stances to generate a schema, a document with all the elements and attributes
that are required plus some additional elements to specify optionality [171].
An XML document to derive an appropriate schema covering the running
example could be:

1 Examplotron:
2 <library xmlns:eg="http://examplotron.org/0/" eg:assert="not(@*)">
3 <book id="_978-0152023980"
4 eg:occurs="+"
5 eg:assert="not(following-sibling::book/@id=@id) and @id=concat(’_’, isbn)">
6 <isbn eg:assert="not(@*)">978-0152023980</isbn>
7 <title eg:assert="not(@*)">The Little Prince</title>
8 <author-ref id="Antoine-de-Saint-Exupéry" eg:occurs="*"/>
9 </book>

10 <author id="Antoine-de-Saint-Exupéry"
11 eg:occurs="*"
12 eg:assert="not(following-sibling::author/@id=@id)">
13 <name eg:assert="not(@*)">Antoine de Saint-Exupéry</name>
14 </author>
15 </library>

2.3 RDFication of XML

In order to be able to directly validate XML data using common RDF valida-
tion tools against semantically rich OWL axioms when using them in terms
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of constraints and extracting them from XSDs adequately representing par-
ticular domains, we propose on formal logics and the XSD meta-model based
automatic transformations of XSDs and conforming XML documents into
OWL ontologies and corresponding RDF data (see Chapter 4).

In this section, we lay the theoretical background for meta-model based
model transformations. First, we comprehensively compare XML/XSD and
RDF/OWL by examining their similarities and differences with regard to their
initial intentions, widespread usage, modeling goals, underlying semantics, and
structuring data. Second, we give an introduction to meta-modeling using
the Meta Object Facility as fundamental component of the Model Driven
Architecture to support the model-driven engineering of software systems.
And third, we provide an in-depth overview of existing approaches translating
XML/XSD into RDF/OWL, and compare them in detail with the suggested
approach.

2.3.1 XML and XML Schema Compared to RDF and OWL

Although the first official concrete syntax of RDF was XML-based [117],
RDF and XML have been developed separately, which has led to different
modeling foundations and which is the reason why RDF and XML serve dif-
ferent purposes. XSD and OWL are both extensively used to determine the
vocabulary of particular domains and to describe conceptual models about
data of various domains, even though they follow different modeling goals.
XSD and OWL have in common that they are similar to object models, i.e.,
they have an object-oriented foundation. For instance, XSD and OWL both
have the notion of class hierarchy and specialization.

More effective and efficient cooperations between individuals and organi-
zations are possible if they take advantage of the synergies of both modeling
languages, i.e., if they agree on a common syntax specified by XSDs and if
they have a common understanding of the domain classes and their relations
defined using OWL.

Similarities and Differences Regarding
Widespread Usage, Initial Intention, and Modeling Goals

The Extensible Markup Language (XML) [60] is extensively used to (1) repre-
sent a large set of information, (2) exchange data in distributed environments,
and (3) integrate data of various sources and domains like the B2B [72], the
multimedia [118], and the biomedical domain [251, 282]. XML became an
important technology in many biomedical domains, driven primarily by the
desire for greater interoperability between biomedical software applications
[282]. Thereby, XML is used to define information models that describe the
structure and the content of biomedical data that can be exchanged between
applications [251].
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XML is a language that defines a generic syntax to store and exchange
documents by means of a tree-based structure. The XML data model describes
the terminology and the syntactic structure of node labeled trees [37]. XML
is document-oriented which means that XML is intended to structure and
exchange documents, but is used data-oriented, i.e., to structure and exchange
data - a purpose for which it has not been developed.

An XML document may be an instance of an XML Schema (XSD)
[108, 304] - the primary, widely adopted, and mostly used technology for
defining structural constraints on sets of XML documents and validating
XML documents on these constraints. XSDs determine the terminology of
particular domains and the syntactic structure of XML documents of specific
classes. XSDs are used to define integrity constraints for documents and semi-
structured data [181]. The XSD construct xsd:choice, for example, is used to
define an exclusive or of XML elements.

Just like XML, the initial intention of XSD concentrates on structuring
documents instead of structuring data, but is generally used to structure data
in XML documents. XSDs basically consist of element declarations, attribute
declarations, simple type definitions, and complex type definitions. These dec-
larations and definitions describe the structure of XML documents of certain
classes, i.e., which elements, attributes, and types are allowed or required as
the content of elements and in which order.

The Resource Description Framework (RDF) [89, 143, 280] is the standard
data format of the Semantic Web. RDF data is published in the increasingly
popular and widely adopted LOD cloud11 [278] to get linked with a huge num-
ber of RDF data sets of different topical domains.12 As RDF is an established
standard, there is a plethora of tools which can be used to interoperate with
data represented in RDF which may semantically conform to RDFS/OWL
ontologies.

RDF Schema (RDFS) [61] provides a data-modeling vocabulary for RDF
data as extension of the basic RDF vocabulary. RDFS provides mechanisms
for describing groups of related resources and the relationships between these
resources. Resources again are used to determine characteristics of other re-
sources, such as the domains and ranges of properties. The RDFS class and
property system is similar to the type systems of object-oriented programming
languages such as Java.

The Web Ontology Language (OWL) [27, 151] in its current version 2 is
an expressive language used to formally specify the semantics of conceptual
models about data and therefore enables software to understand and prop-
erly process data according to its intended semantics. OWL is used to specify
semantic information about domains, to describe relations between domain
classes, and thus allows the sharing of conceptualizations. OWL has become a
popular standard for data representation, data exchange, and data integration

11 http://lod-cloud.net
12 http://linkeddata.org

http://lod-cloud.net
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of heterogeneous data sources and provides facilities for developing very pow-
erful reasoning services enabling to derive implicit knowledge out of explicitly
stated knowledge. OWL is based on formal logic and on the subject-predicate-
object triples from RDF.

Differences Regarding Semantics

We distinguish the syntactic level of XSD and the semantic level of OWL. XSD
is used to define the syntactic structure of sets of XML documents rather than
their underlying model. The minimum or maximum occurrence of an element,
e.g., describes what can appear at that lexical position and is quite different
to an OWL cardinality restriction. OWL, in contrast, is used to formally and
semantically describe domains and to model semantic relationships between
domain classes. [99] even assume, that a suitable automatic mapping between
XML and RDF is impossible, since XML does not contain any semantic con-
straints. It is claimed that XML represents the document structure, but does
not contain any information about the meaning of the content. Other ap-
proaches, however, assume that there is some semantics in XML documents,
which can be discovered out of the document structure. [216], for instance,
assumes that every XML document has an RDF model and therefore tries to
detect semantics in XML instance documents and to map them to RDF.

Even though it was not the initial intention of XSD to define semantics
of data models, XSDs are commonly used to represent semantic information
like OWL, but to a lesser extend. The difference is that OWL provides much
more powerful features for representing semantic information and that OWL
is used to specify semantics of domain data models both formally and ex-
plicitly. Semantics of XSDs, on the other hand, are only defined implicitly
so that different XML documents have the same implicit semantics in case
they correspond to the same XSD. Examples of implicit XSD semantics are
class memberships of XML elements and relationships between XML elements.
For transformations of XML/XSD into RDF/OWL, this means that implicit
semantics of XSD constructs must be made explicit and based on formal se-
mantics.

XSD and OWL are founded on varying underlying semantics. XSD is
based on the unique name assumption (UNA), i.e., two resources with dif-
ferent names are indeed different, whereas OWL is not based on the UNA,
but on the non-unique name assumption (nUNA), i.e., two resources with dif-
ferent names may be the same and therefore may be explicitly declared being
different (owl:differentFrom) or identical (owl:sameAs).

XSD is based on the Closed-World Assumption (CWA) and OWL on the
Open-World Assumption (OWA). According to the OWA, missing information
is undecided, and CWA means that missing information is considered to be
false. We refer to Section 2.5 for an in-depth comparison between the semantics
for (1) XML validation, (2) RDF validation, and (3) OWL reasoning.
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Differences Regarding Structuring Data

XML and RDF are different in how they structure data. XML is based on
a tree model where only nodes are labeled and outgoing edges are ordered.
This model originates from semi-structured data and databases. The XSD
construct sequence is used to specify the explicit order of XML elements con-
tained in parent elements.

RDF, in contrast, is set-oriented and based on a directed graph model
where edges have labels, but are unordered. RDF distinguishes between re-
sources (e.g., books and persons) and properties (e.g., has author) while XML
does not, i.e., both resources and properties would be elements. This model
originates from knowledge representation languages such as Frames [225] and
Description Logics [12, 13, 196, 272]. These structural differences of the data
models, however, represent no obstacle, as trees are a specialization of graphs.

Differences Regarding Reasoning

The underlying proof-theory of OWL enables inference engines, also called rea-
soners, to execute automatic inferences in order to derive implicit triples out
of explicitly stated triples. XSD does not offer reasoning services as XSDs are
only used to validate XML elements and XML attributes which are explicitly
stated in conforming XML documents.

Differences Regarding Global Uniqueness of Identifiers

OWL and XSD differ with regard to the global uniqueness of defined names.
OWL IRIs (Internationalized Resource Identifiers) [105] are globally unique,
whereas, XSD global element declarations and global complex type definitions
are not globally unique but unique within namespaces. For software engineer-
ing languages like UML, package names must be globally unique, class names
have to be unique within a package, and attribute names must be unique
within a class.

2.3.2 Model Driven Architecture

Model-Driven Engineering (MDE) [73] is a methodology to develop systems
using models which is seen as an emerging solution to handle complex and
evolving software systems. The Model Driven Architecture (MDA) [113, 215]
is an initiative of the standardization organization Object Management Group
(OMG)13 to support the model-driven engineering of software systems which
is based on the conviction that modeling gives a good foundation to develop
and maintain software systems. MDA uses modeling to raise the abstraction
level and to manage the complexity of systems.

13 http://www.omg.org

http://www.omg.org
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The Meta Object Facility (MOF) [247] is a fundamental component of the
MDA. To support the MDA initiative, it is essential that designed models
are commonly understood by all involved parties. This requires the ability
to specify the meaning of models by means of meta-models. A meta-model
specifies the constructs of a modeling language which is used to formulate
models.

MOF is organized in four layers to adequately structure the relationships
between a meta-model and model instances that represent the objects in the
real world. These four layers are the information (M0), the model (M1), the
meta-model (M2), and the meta-meta-model (M3) layers (see Figure 2.1 for
a simplified representation of the MOF layers).

The undermost information layer (M0) of this hierarchy contains real
world objects like the book A Study in Scarlet whose author is Arthur Conan
Doyle. The model layer (M1) contains the definition of required structures like
concrete properties and classes used to classify information. In our example,
the classes Book and Person and the property author are defined. If these
structures are combined, they describe the model for a given domain.

The meta-model layer (M2) specifies the terms in which the model is ex-
pressed. In our example, we would state that models are expressed by classes
and properties by instantiating appropriate meta-classes. The meta-meta-
model layer (M3) defines the modeling constructs that can be used to define
meta-models on the meta-model level. The meta-meta-model layer contains
only the simplest set of concepts which are used to define the structure and
the semantics of any meta-model.

2.3.3 Approaches Transforming XML/XSD into RDF/OWL

In this section we provide an in-depth overview of existing approaches
converting XML/XSD into RDF/OWL, and compare them in detail with the
suggested approach. The main differences are:

• Meta-model based transformations. In comparison to previous tools,
the novelty of the devised approach is that the translation of XSDs into
OWL ontologies is based on the XSD meta-model on level M2.

• Transformations on levels M0 and M1. The majority of the tools are
designed to transform either XML into RDF on the assertional knowledge
level M0 or schemas into OWL on the terminological knowledge level
M1. We follow a complete approach converting XML documents to OWL
individuals (M0) and XSDs into OWL ontologies (M1) which correspond
to an OWL ontology representing the XSD meta-model (M2).

• Automatic transformations. Many existing approaches propose to
map XML to RDF (M0) and/or XSD to RDFS/OWL (M1) in a manual
manner. The overall transformation process of the suggested approach,
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Fig. 2.1. Meta Object Facility Layers

however, is performed semi-automatically. (1) We translate XSDs and
XML into OWL ontologies and their RDF representation in an automatic
way. Generated OWL ontologies can be used directly after they have been
created but they might not be as useful as manually created domain on-
tologies. (2) In order to automatically derive OWL domain ontologies out
of these generated OWL ontologies, we have to define SWRL rules by
hand which can then be executed by rule engines.

• High expressivity of OWL 2 ontologies. Divers existing tools gener-
ate RDFS ontologies and not the more expressive OWL or even OWL 2
ontologies. The suggested approach converts XSDs to OWL 2 ontologies
as we want to use the high expressive power of OWL 2 to adequately
express the formal semantics of the resulting ontologies.

Several strategies lifting the syntactic level of XML documents and XSDs
to the semantic level of RDF and OWL ontologies can be distinguished. We
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cluster these transformations tools into three classes. The classification de-
pends on the level of conversion which happens either on the instance (M0),
the conceptual (M1), or both, the instance and the conceptual level.

Transformations on Instance Level M0

On the instance level M0, [180] developed the so-called RDF Schema map-
ping ontology which enables a one-way mapping of XML documents to RDF.
Relevant content of XML documents can be identified. As extension to this ap-
proach, [17] introduced a bidirectional mapping of XML components to RDF.
The WEESA system implements an automatic transformation from XML to
RDF using an OWL ontology which is created manually from corresponding
XSDs and manually defined rules. XML document instances, however, are not
mapped to OWL individuals which correspond to this OWL ontology [266].
[251] transform XML documents to individuals of an OWL ontology describing
the serialization of the XML document. SWRL is used to map these instances
to individuals of a domain ontology.

Transformations on Schema Level M1

On the conceptual level M1, we distinguish between approaches convert-
ing schema languages to RDFS or to OWL. Several languages for writing
schemas like Document Type Declaration (DTD) [60], XSD [304], Document
Structure Description (DSD) [179] and Relax NG [81] exist. The prototype
OntoLiFT [317] offers a generic means for converting schemas expressed by
arbitrary schema languages to RDFS ontologies semi-automatically. In a first
step, schemas are transformed into regular tree grammars consisting of non-
terminals, terminals, start symbols and production rules [231]. In a second
step, non-terminals and terminals are converted to RDFS classes and produc-
tion rules are mapped to RDF properties. [6] base transformations of multiple
models such as OWL, XSD, and RDF on a meta-model, the superimposed
meta-model. The limitation is that the meta-models of XSD and OWL are
not complete.

Transformations on Instance Level M0 and Schema Level M1

On the instance level M0 and on the conceptual level M1, there are meth-
ods transforming XML to RDF and XSD to either RDFS or OWL. Within
the EU-funded project called Harmonise, the interoperability of existing stan-
dards for the exchange of tourism data has been achieved by transformations
of XML documents and XSDs into RDF and RDFS ontologies which are
mapped to each other [100]. [252] transform XML document instances into
OWL ontologies, even though associated XSDs do not exist. As a consequence,
unstructured contents can be converted to OWL ontologies as well. XSDs can
also be mapped to OWL ontologies as XSD documents are represented in
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XML, too. It is possible to generate new OWL ontologies from scratch and to
extend existing ones. They evolved XML Master, a language to describe OWL
ontologies declaratively. XML Master combines the Manchester OWL Syntax
[152] and XPath to refer to XML content. They criticize the limited and un-
satisfactory number of OWL constructs supported by current tools converting
XSDs to OWL ontologies. Thus, they convert all OWL constructs. One short-
coming is that the mapping language expressions have to be written manually
and therefore XML documents and XSDs cannot be transformed into OWL
ontologies completely automatically. Another drawback is that ontology en-
gineers have to be familiar with the Manchester OWL Syntax and XPath to
express the mappings. [109] propose both mappings from XML to RDF (M0)
and XSD to OWL (M1) which are independent from each other. This means,
OWL individuals do not necessarily correspond to the OWL ontology, since
declarations and definitions of XML documents may be transferred to different
OWL constructs. [188] transfer XSD components to OWL language constructs
at the terminological level (M1) and XML document instances to OWL indi-
viduals at the assertional level (M0). Thereby, XPath expressions are applied
to select the content of XML documents. Besides that, the approach of [305]
is very similar to the method of [188].

[32] devised mappings between XML and RDF (M0) and between XSD and
OWL (M1). They assume that XML documents are structured like relational
databases which is the reason why relational structures of XML documents are
discovered and represented in OWL. Relations correspond to classes, columns
to properties, and rows to instances. XML data model elements are mapped
automatically to components of the OWL data model. Named simple and
complex types, for instance, are transferred to classes. Elements, containing
other elements or having at least one attribute, are converted to classes and
object properties between these classes. Both, elements, including neither at-
tributes nor sub-elements, and attributes, which are assumed to represent
database columns, are transformed into data properties with the surrounding
element as domain. Besides, XML cardinality constraints are transformed into
equivalent OWL cardinality restrictions.

2.3.4 Meta-Model Based Model Transformations

We generalize from uni-directional transformations of XSD models into
OWL models to bidirectional transformations between models of any meta-
model like XSD [304], RDFS [61], OWL 2 [27], relational database schemas,
Java [126], the Unified Modeling Language (UML) 2 [243, 244], the Systems
Modeling Language (SysML) [245], and the Business Process Model and No-
tation (BPMN) 2 [246]. The Common Warehouse Meta-Model (CWM) [242]
may be used as meta-model for relational database schemas. The main pur-
pose of CWM is to enable an easy interchange of warehouse and business in-
telligence metadata between warehouse tools, platforms, and metadata repos-
itories in distributed heterogeneous environments. Meta-model based trans-
formations of arbitrary models to OWL models enable to convert any data
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to RDF and to validate any data according to constraints extractable from
models of arbitrary meta-models using common RDF validation tools.

Query/View/Transformations (QVT) [250] is a language to define trans-
formations between models on the meta-model level. QVT is based on MOF
and the Object Constraint Language (OCL) [248]. OCL is a formal, declara-
tive, and precise language for describing rules which provides constraint and
object query expressions on any MOF model or meta-model that cannot oth-
erwise be expressed by diagrammatic notation. QVT can be used to define
transformation models describing transformations between source and tar-
get models of any meta-model. Instead of transforming models directly on
the model level, model transformations are specified on the meta-model level
using meta-model constructs and semantics. By defining transformations on
a higher meta-level, model transformations do not depend on the converted
models. They only depend on the involved meta-models which enables an
elegant description of the transformation.

The Eclipse Modeling Project14 focuses on model-based development tech-
nologies by providing a set of modeling frameworks, tooling, and implementa-
tions of standards. As core of the Eclipse Modeling Project, the Eclipse Model-
ing Framework (EMF) [293] provides a basic framework for the model-driven
engineering of software systems which supports MOF-based meta-modeling.
As part of EMF, ecore [71] has emerged as the de facto standard for the defini-
tion of meta-models and therefore serves as meta-meta-model to specify meta-
models. Ecore is similar to Essential MOF (EMOF) [247], the lightweight core
of MOF.

Prerequisite for performing meta-model based model transformations is to
represent meta-models and models as direct and indirect instances of the ecore
meta-meta-model. There are multiple MOF-based meta-models which are al-
ready represented conforming to ecore, such as OWL 2,15 XSD,16 UML 2,17

and BPMN 2.18 Additionally, [63] provides MOF-based meta-models for OWL
ontologies [64, 65, 69, 70], OWL ontology mappings [68], SWRL [66, 67, 154],
and F-Logic [177, 178] which integrates logic with object-oriented program-
ming. Ecore represetations of meta-models and models are physically repre-
sented by the standard exchange format XML Metadata Interchange (XMI)
[249].

As model transformations are defined by means of the abstract syntax
instead of concrete syntaxes of a language, they become independent of any
particular representation and transformations do not have to be defined for
each concrete syntax. OWL 2, for instance, has many concrete syntaxes such
as the Functional-Style syntax [27], the RDF 1.1 Turtle syntax [262], the RDF

14 https://eclipse.org/modeling
15 https://www.w3.org/2007/OWL/wiki/MOF-Based Metamodel
16 Directly integrated in EMF as Eclipse plug-in
17 https://projects.eclipse.org/projects/modeling.mdt.uml2
18 http://wiki.eclipse.org/MDT-BPMN2

https://eclipse.org/modeling
https://www.w3.org/2007/OWL/wiki/MOF-Based_Metamodel
https://projects.eclipse.org/projects/modeling.mdt.uml2
http://wiki.eclipse.org/MDT-BPMN2
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1.1 XML syntax [117], the OWL 2 XML serialization [230], the Manchester
syntax [152], and JSON-LD 1.0 [289].

There are several independent implementations of QVT. One of the three
domain specific languages of QVT is QVT Operational Mappings (QVTo)
[250], an imperative language that looks similar to other imperative languages
such as Java and whose syntax corresponds to the syntax of OCL since QVTo
is based on OCL. QVTo is the QVT language with currently the best tool
support and the largest fostering community. The black box mechanism of
QVTo allows to code complex algorithms in any supported programming lan-
guage. This is very useful because some algorithms are very hard to formulate
in OCL.

2.4 RDF Validation

According to the W3C RDF Data Shapes Working Group, the process of
checking conformance of nodes in an RDF graph to some kind of schema is
referred to as validation. The output of a constraint validation process is a
set of validation results, a validation report which indicates whether or not
the validated graph conforms to the schema. If any constraint in the schema
is not satisfied, the validation report includes one or more constraint viola-
tions indicating the source of the violation as well as useful human-readable
messages [186].

In this section, we introduce current languages for the formulation of con-
straints and the validation of RDF data against these constraints. SPARQL,
SPIN, OWL, ShEx, ReSh, and DSP are the six most promising and mostly
used constraint languages. In addition, the W3C working group currently de-
velops SHACL, an RDF vocabulary for describing RDF graph structures, and
OWL reasoning techniques, i.e., terminological and assertional OWL queries,
can be executed to determine if data models are consistent, and finally, to
prevent poor quality of data models.

Besides the pure formulation of constraints on RDF data, SPIN (open
source API), Stardog ICV (as part of the Stardog RDF database), DQTP
(tests), Pellet ICV (as extension of the Pellet OWL 2 DL reasoner), and
ShEx offer executable validation environments using SPARQL as a language
to actually implement RDF data validation.

2.4.1 SPARQL Query Language for RDF (SPARQL)

The SPARQL Query Language for RDF [8, 134] is generally seen as the
method of choice to validate RDF data according to certain constraints [115],
although SPARQL queries can be quite long and complex. SPARQL can
be used to express queries across diverse data sources, whether the data is
stored natively as RDF or just viewed as RDF via middleware. The results of
SPARQL queries can be results sets or RDF graphs.
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SPARQL is very expressive and can even be used to validate numerical and
statistical computations [121]. On the other hand, SPARQL does not allow to
support recursive constraints. Hence, [268] recently proposed an extension op-
erator to SPARQL to include recursion. Nevertheless, most SPARQL engines
already have functions that go beyond the official SPARQL 1.1 specification.

SPARQL enables to express constraints of high complexity. For assessing
the quality of thesauri, e.g., we concentrate on their graph-based structure and
apply graph- and network-analysis techniques. An example of such constraints
of high complexity is to prevent that a thesaurus contains many orphan con-
cepts, i.e., concepts without any associative or hierarchical relations, lacking
context information valuable for search. As the complexity of this constraint
is relatively high, it is only expressible by plain SPARQL:

1 SPARQL:
2 SELECT ?concept WHERE {
3 ?concept a [ rdfs:subClassOf* skos:Concept ] .
4 FILTER NOT EXISTS { ?concept ?p ?o .
5 FILTER ( ?p IN ( skos:related, skos:relatedMatch,
6 skos:broader, ... ) ) . } }

There have been other proposals using SPARQL combined with other
technologies. [284], e.g., propose a combination of SPARQL queries, a set
of property paths, and value constraints. [110] propose RDF Data Descrip-
tions, a domain-specific constraint language that is compiled into SPARQL
queries for constraint checking. When translating relational data in conven-
tional relational databases into RDF, [200] show that SPARQL can be used
as a constraint language, akin to SQL in the relational context.

2.4.2 SPARQL Inferencing Notation (SPIN)

In contrast to SPARQL, high-level constraint languages are comparatively
easy to understand and constraints can be formulated more concisely. Declar-
ative constraint languages may be placed on top of SPARQL and SPIN when
using them as low-level implementation languages. The SPARQL Inferencing
Notation (SPIN)19 [185] provides a vocabulary to represent SPARQL queries
as RDF triples [184] and uses SPARQL to specify logical constraints and
inference rules [115].

The SPIN SPARQL Syntax provides a means for representing SPARQL
queries in RDF. Having a triple-based SPARQL representation makes it easier
to consistently store SPARQL queries together with the data to be validated
as well as the conceptual models of domains, i.e., RDFS/OWL definitions
[184]. The SPIN Modeling Vocabulary is a lightweight collection of properties
and classes to support the use of SPARQL to specify logical constraints and
inference rules. Based on an RDF representation of SPARQL queries, SPIN

19 http://spinrdf.org

http://spinrdf.org
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defines three class description properties: (1) spin:constraint to define con-
ditions that all members of a given class must fulfill, (2) spin:rule to specify
inference rules using SPARQL CONSTRUCT and DELETE/INSERT queries
and (3) spin:constructor to initialize new instances with default values [183].

SPIN provides a mechanism to encapsulate SPARQL queries into reusable
building blocks so that they can be shared on the Semantic Web. In particular,
SPIN makes it possible to define new SPARQL functions and query templates
together with definitions of their arguments. The SPIN Standard Modules Li-
brary is a collection of such SPIN functions and templates that are of general
use. Among others, this library covers some common domain modeling pat-
terns such as cardinality and value constraints. The SPIN Standard Modules
Library also declares standard SPARQL functions like != and BOUND [182].

We make use of SPIN to actually implement existential quantifications in
OWL which enforce that instances of given classes must have some property
relation to individuals/literals of a certain class or datatype via particular
object or data properties:

1 SPIN:
2 owl2spin:ObjectSomeValuesFrom
3 a spin:ConstructTemplate;
4 spin:body [
5 # CONSTRUCT {
6 # _:constraintViolation
7 # a spin:ConstraintViolation ;
8 # spin:violationRoot ?subject ;
9 # rdfs:label ?violationMessage ;

10 # spin:violationSource "Existential Quantification" ;
11 # :severityLevel :error ;
12 # spin:violationPath ?OPE ;
13 # spin:fix ?violationFix }
14 a sp:Construct ;
15 sp:templates (
16 [ sp:subject _:constraintViolation ;
17 sp:predicate rdf:type ;
18 sp:object spin:ConstraintViolation ]
19 ... ) ;
20 # WHERE {
21 # ?subject rdf:type ?subC .
22 # ?subC rdfs:subClassOf* ?C .
23 sp:where (
24 [ sp:subject [ sp:varName "subject" ] ;
25 sp:predicate rdf:type ;
26 sp:object [ sp:varName "subC" ] ]
27 [ a sp:TriplePath;
28 sp:subject [ sp:varName "subC" ] ;
29 sp:path [
30 a sp:ModPath ;
31 sp:modMax -2 ;
32 sp:modMin 0 ;
33 sp:subPath rdfs:subClassOf ] ;
34 sp:object [ sp:varName "C" ] ]
35 # ?C a owl:Restriction .
36 # ?C owl:onProperty ?OPE .
37 # ?C owl:someValuesFrom ?CE .
38 [ sp:subject [ sp:varName "C" ] ;
39 sp:predicate rdf:type ;
40 sp:object owl:Restriction ]
41 ...
42 # FILTER ( ! ( spl:hasValueOfType ( ?subject, ?OPE, ?CE ) ) ) .
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43 [ a sp:Filter ;
44 sp:expression [
45 a sp:not ;
46 p:arg1 [
47 a spl:hasValueOfType ;
48 sp:arg1 [ sp:varName "subject" ] ;
49 sp:arg2 [ sp:varName "OPE" ] ;
50 sp:arg3 [ sp:varName "CE" ] ] ] ]
51 # BIND ( ( ... ) AS ?violationMessage ) .
52 # BIND ( ( ... ) AS ?violationFix ) . }
53 ... ) ].

2.4.3 Data Quality Test Patterns (DQTP)

Inspired by test-driven software development, RDFUnit [192] and Databug-
ger [191] are test-driven validation frameworks that can run manually and
automatically generated test cases against SPARQL endpoints. All test cases
are executed as SPARQL queries using a pattern-based transformation ap-
proach. These frameworks are based on 17 data quality integrity constraints
represented as SPARQL query templates called Data Quality Test Patterns
(DQTP) [192].

A common type of constraints is to restrict data properties to have a
minimum, maximum, or exact number of relationships to literals with selected
language tags. One of the SPARQL templates provided by [192] can be used,
e.g., to ensure that no language is used more than once per property. Thereby,
P1 is replaced by the property pointing to the literal and V1 by the language
we want to check:

1 DQTP:
2 SELECT DISTINCT ?s
3 WHERE { ?s %%P1%% ?c
4 BIND ( lang(?c) AS ?l )
5 FILTER (isLiteral (?c) && lang(?c) = %%V1%%)}
6 GROUP BY ?s HAVING COUNT (?l) > 1

[101] suggest an incremental and iterative validation workflow for RDF
data sets and incorporate the test-driven approach. [190] extend the developed
methodology of Linked Data quality assessment and describe how the method
is applied in the Natural Language Processing area for assessing NLP data
quality.

2.4.4 Web Ontology Language (OWL)

The Web Ontology Language (OWL) [27, 151] in its current version 2 is
an expressive language used to formally specify the semantics of conceptual
models about data and therefore enables software to understand and properly
process data according to its intended semantics. OWL is used to specify
semantic information about domains, to describe relations between domain
classes, and thus allows the sharing of conceptualizations. OWL has become a
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popular standard for data representation, data exchange, and data integration
of heterogeneous data sources. Besides that, the retrieval of data benefits from
semantic knowledge specified in OWL.

OWL for Reasoning

OWL is based on formal logic and the subject-predicate-object triples from
RDF. Description Logics (DL) provides the foundational basis for OWL.20

More specifically, OWL is actually a Description Logic with underlying formal
semantics which allows one to assign truth values to syntactic expressions.

In combination with the OWL-based Semantic Web Rule Language (SWRL)
[154], OWL provides facilities for developing very powerful reasoning services.
Reasoning on RDF data enables to derive implicit data out of explicitly stated
data. RDFS and OWL reasoning enrich query answering over Linked Data by
obtaining more complete answers for structured queries over interlinked RDF
data sets [257]. OWL reasoning techniques, i.e., terminological and assertional
OWL queries, can be executed to determine if data models are consistent [294],
and finally, to prevent poor quality of data models.

Terminological OWL queries can be divided into checks for global con-
sistency, class consistency, class equivalence, class disjointness, subsumption
checking, and ontology classification [294]. A class is inconsistent if it is equiv-
alent to owl:Nothing which indicates a modeling error. If there are not any
objects satisfying a class definition, the respective class is not consistent (check
for class consistency). An ontology is globally consistent if it is devoid of in-
consistencies, i.e., the ontology does not have any contradictions (check for
global consistency). Unsatisfiability is often an indication of errors in class def-
initions and for this reason the overall quality of ontologies is checked using
global consistency checks. By means of ontology classification, the ontology’s
class hierarchy is calculated on the basis of class definitions. Subsumption
checking on the TBox is used to infer super- and sub-class relations between
classes. Applied mutually to every possible pair of classes, subsumption check-
ing makes it possible to build the whole class hierarchy. The fact that an in-
stance is assigned to classes, which are defined to be disjoint, is a signal for
poor data quality (class disjointness).

Instance checks, class extensions, property checks, and property extensions
are classified as assertional OWL queries [294]. Instance checks are used to
test if a specific individual is a member of a given class. The search for all
individuals contained in a given class may be performed in terms of class
extensions. Property checks and property extensions can be defined similarly
with regard to pairs of individuals.

20 DL can also be used for reasoning with RDF(S), cf. [97]
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OWL as Constraint Language for RDF Validation

Validation is not the primary purpose of the design of OWL which has lead
to claims that OWL cannot be used for validation. [228] and [229], e.g., dis-
cuss the differences between constraints and RDFS/OWL axioms. In practice,
however, OWL is well-spread and RDFS/OWL constructs are widely used to
tell people and applications about how valid instances should look like. In
general, RDF documents follow the syntactic structure and the intended se-
mantics of RDFS/OWL ontologies which could therefore not only be used for
reasoning but also for validation.

Universal quantifications in OWL are used to build anonymous classes
containing all individuals that are connected by particular properties only to
instances/literals of certain classes/data ranges. Hence, universal quantifica-
tions can also be used to check, e.g., if all the publications, described in the
data to be validated, only have persons as authors:

1 OWL 2:
2 :Publication rdfs:subClassOf
3 [ a owl:Restriction ;
4 owl:onProperty :author ;
5 owl:allValuesFrom :Person ] .

[299] suggested an extension of the OWL 2 profile OWL 2 DL to sup-
port the formulation of integrity constraints. This enables to use OWL 2 as a
constraint language for validating RDF data under the CWA by conjunctive
query answering. [286] proposed an alternative semantics for OWL 2 using
the CWA so that it could be used to formulate integrity constraints. They
examined integrity constraint semantics proposed in the deductive databases
literature and adopted them for OWL 2 by reducing the validation based
on integrity constraints to SPARQL query answering by means of reasoners.
Although the alternative semantics for OWL 2 is implemented in the Star-
dog database,21 it has never been submitted to an international standards
organization such as the W3C.

In DL, reasoning tasks like query answering or detection of inconsistencies
require the consideration of knowledge that is not only defined explicitly but
also implicitly. To do so there are two different ways called forward- and
backward-chaining. The first method implies a materialized knowledge base,
where the original knowledge base is extended by all assertions that can be
inferred. State-of-the-art DL or OWL reasoners following this approach are
FaCT++ [306], Pellet [285], RacerPro [132], and HermiT [153].

On the second approach, the original knowledge base is kept in its original
state. Before queries are evaluated against the knowledge base, queries are
rewritten such that the rewritings also consider the implicit knowledge in the
result set. Approaches following this way are PerfectRef [75] or TreeWitness
[189], which are implemented in the –ontop– framework22 for ontology-based

21 http://stardog.com
22 http://ontop.inf.unibz.it

http://stardog.com
http://ontop.inf.unibz.it
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data access. The first solution is applied on local knowledge bases whereas the
second is more appropriate for federative environments like in [238, 239].

Stardog Integrity Constraint Validation (ICV) and the Pellet Integrity
Constraint Validator (ICV) use OWL 2 constructs to formulate constraints
on RDF data. Pellet ICV 23 is a proof of concept extension for the OWL 2 DL
reasoner Pellet [285]. Stardog ICV 24 validates RDF data stored in a Stardog
database according to constraints in SPARQL, OWL 2, or SWRL [154].

2.4.5 Shape Expressions (ShEx)

Shape Expressions (ShEx) [33, 119, 260, 287] specifies a schema language
for RDF graphs designed to provide a high-level, user friendly syntax with
intuitive semantics similar to the syntax and the semantics of regular expres-
sions. ShEx allows to describe the vocabulary and the structure of an RDF
graph, and to constrain the allowed values for properties. It includes an alge-
braic grouping operator (in a first version of ShEx, the conjunction operator
was used instead of grouping [263]), a choice operator, cardinality restrictions
on properties, negation, and recursion [34]. [288] define the formal semantics
of the ShEx language through the use of the formal specification language Z
notation [1, 163]. [34] illustrate the features of the language and demonstrate
these features with examples.

ShEx enables to validate nodes in a graph against schema constructs called
shapes, i.e., graphs with labeled patterns which are used to express formal
constraints on the content of data graphs. Validating a focus node, i.e., the
currently validated node, in a graph against a shape recursively tests the nodes
which are the subjects or objects of triples constrained in that shape. Given a
node in an RDF graph and a constraint defined in a ShEx schema, the ShEx
validation algorithm checks whether the node satisfies that constraint. The
algorithm outputs a proof including associations of nodes and the constraints
that they satisfy.

[292] studied the complexity of validation with ShEx in absence of negation
and under the closed world assumption. The language’s balance between ex-
pressivity and complexity is supplemented by an extension mechanism which
enables more expressive semantic actions using SPARQL, acting like Schema-
tron rules embedded in XSD or Relax NG.

ShEx addresses the problem of detecting and terminating cyclic validation:
If a graph has cycles on edges which appear in shapes, validation may arrive
at validating the same node against the same shape, e.g., when testing if a
publication and all the referenced publications are valid.

ShEx allows to restrict individuals of given classes to have property rela-
tionships of all properties of exactly one of multiple mutually exclusive prop-
erty groups. Publications, e.g., are either identified by an ISBN and a title (for

23 http://clarkparsia.com/pellet/icv
24 http://docs.stardog.com/# validating constraints

http://clarkparsia.com/pellet/icv
http://docs.stardog.com/#_validating_constraints
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books) or by an ISSN and a title (for periodical publications), but it should
not be possible to assign both identifiers to a given publication:

1 ShEx:
2 :Publication {
3 ( :isbn xsd:string , :title xsd:string ) |
4 ( :issn xsd:string , :title xsd:string ) }

In case Harry-Potter is a publication with an ISBN and a title without an
ISSN, Harry-Potter is considered as a valid publication.

ShEx has several open source implementations25 (some of them can be
tested online), has been used as a basis for web applications like the web ap-
plication developed by [133], has been used for the description and validation
of two linked data portals [120], and is currently used in medical informatics
for describing clinical models.

As future development of ShEx, [34] are working on the definition of high-
level logical constraints on top of ShEx schemas, on data exchange and data
transformation solutions based on ShEx, and on heuristics for helpful error
reporting.

2.4.6 Resource Shapes (ReSh)

ShEx was originally created to provide a domain-specific language for Re-
source Shapes, a technique developed by IBM as part of the Open Services
for Lifecycle Collaboration (OSLC) initiative [173]. Resource Shapes (ReSh)
[111, 274] defines its own vocabulary for specifying shapes of RDF resources
and for describing simple conjunctions of shape constraints. [275] define shape
as a description of the set of triples a resource is expected to contain and
as a description of the integrity constraints those triples are required to sat-
isfy. ReSh includes descriptive features like oslc:readOnly, oslc:hidden, and
oslc:name which have no effect on validation but can be useful for tools gen-
erating user input forms.

It is a common requirement to narrow down the value space of properties
by an exhaustive enumeration of valid values. Consider, e.g., the following
constraint stating that books on the topic computer science can only have
”Computer Science”, ”Informatics”, and ”Information Technology” as sub-
jects:

1 ReSh:
2 :Computer-Science-Book a oslc:ResourceShape ;
3 oslc:property [ oslc:propertyDefinition :subject ;
4 oslc:allowedValues [ oslc:allowedValue
5 "Computer Science" , "Informatics" , "Information Technology" ] ] .

25 http://www.w3.org/2001/sw/wiki/ShEx#Implementations

http://www.w3.org/2001/sw/wiki/ShEx#Implementations
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2.4.7 Description Set Profiles (DSP)

The Dublin Core Application Profile and the BIBFRAME Profile are ap-
proaches to specify profiles for application-specific purposes. The term profile
is widely used to refer to a document that describes how standards or specifi-
cations are deployed to support the requirements of a particular application,
function, community, or context. In the metadata community, the term ap-
plication profile has been applied to describe the tailoring of standards for
specific applications.

A Dublin Core Application Profile (DCAP) [86] defines metadata records
which meet specific application needs while providing semantic interoperabil-
ity with other applications on the basis of globally defined vocabularies and
models. The Singapore Framework for Dublin Core Application Profiles [235]
is a framework for designing metadata and for defining DCAPs. The frame-
work comprises descriptive components that are necessary or useful for docu-
menting DCAPs.

The DCMI Abstract Model [258] is required to formalize a notion of
machine-processable application profiles. It specifies an abstract model for
Dublin Core metadata which is independent of any particular encoding syntax.
Its primary purpose is to specify the components used in Dublin Core meta-
data. The DC-RDF [236] recommendation depicts how Dublin Core metadata
and therefore the constructs of the DCMI Abstract Model are represented in
RDF by means of the abstract syntax of the RDF model.

The Description Set Profile (DSP) [234] is a generic constraint language
which is used to formally specify structural constraints on sets of resource
descriptions within an application profile. DSP allows to restrict resources
that may be described by descriptions in a description set, the properties that
may be used, and the values the properties may point to. DSP constraints can
be represented by means of an RDF vocabulary or a conventional XSD.

With DSP, constraints on resources can be defined within an applica-
tion profile, i.e., constraints expressed in DSP determine how valid descrip-
tions of resources in a description set should look like. A DSP consists of a
set of dsp:DescriptionTemplates that put constraints on classes denoted by
dsp:resourceClass:

1 DSP:
2 [ a dsp:DescriptionTemplate ;
3 dsp:resourceClass :Science-Fiction-Book ;
4 dsp:statementTemplate [
5 a dsp:NonLiteralStatementTemplate ;
6 dsp:property :subject ;
7 dsp:nonLiteralConstraint [
8 a dsp:NonLiteralConstraint ;
9 dsp:valueClass skos:Concept ;

10 dsp:valueURIOccurrence "mandatory"^^dsp:occurrence ;
11 dsp:valueURI :Science-Fiction, :Sci-Fi, :SF ;
12 dsp:vocabularyEncodingSchemeOccurrence "mandatory"^^dsp:occurrence ;
13 dsp:vocabularyEncodingScheme :Science-Fiction-Book-Subjects ; ] ] .
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The description template above describes resources of the type Science-
Fiction-Book (dsp:recourceClass). The DSP construct dsp:NonLiteralStatement
Template is used to specify constraints on object properties with a particular
resource class as domain. The dsp:NonLiteralStatementTemplate in the exam-
ple restricts science fiction books to have subject (dsp:property) relationships
to non-literal values which are further restricted in a dsp:NonLiteralConstraint.

Non-literal values, to which the property subject is pointing, have to be of
the class skos:Concept (dsp:valueClass). A URI must be given (dsp:valueURI
Occurrence mandatory) for non-literal values, whereas the only allowed URIs
(dsp:valueURI ) are Science-Fiction, Sci-Fi, and SF.

Controlled vocabularies like Science-Fiction-Book-Subjects are represented
as skos:ConceptSchemes in RDF and as dsp:VocabularyEncodingSchemes in
DSP. If vocabulary encoding schemes must be stated (dsp:vocabularyEncoding
SchemeOccurrence mandatory), they must contain the non-literal values spec-
ified within the description template.

In this case, non-literal values must be assigned to the class skos:Concept
and be related to the controlled vocabulary Science-Fiction-Book-Subjects
via the object properties skos:inScheme and dcam:memberOf. The book
The-Time-Machine satisfies all constraints defined for resources of the type
Science-Fiction-Book :

1 RDF (Turtle syntax):
2 :The-Time-Machine
3 a :Science-Fiction-Book ;
4 :subject :Science-Fiction .
5 :Science-Fiction
6 a skos:Concept ;
7 dcam:memberOf :Science-Fiction-Book-Subjects ;
8 skos:inScheme :Science-Fiction-Book-Subjects .
9 :Science-Fiction-Book-Subjects

10 a skos:ConceptScheme .

2.4.8 BIBFRAME

BIBFRAME [125, 195, 220, 223] has been developed by the Bibliographic
Framework Initiative, a framework or lightweight meta-model for the discovery
and exchange of library information. BIBFRAME defines a vocabulary [205,
207] having a strong overlap with DSP and BIBFRAME Profiles [206] are
essentially identical to DCAPs. According to the BIBFRAME Profile below,
persons must have a name which has to be a literal:

1 BIBFRAME:
2 { "Profile":
3 {
4 "id": "profile:bf:Persons",
5 "title": "BIBFRAME Persons",
6 "resourceTemplates": [
7 {
8 "id": "profile:bf:Person",
9 "resourceURI": :Person,

10 "resourceLabel": "Person",
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11 "propertyTemplates": [
12 {
13 "propertyURI": :name,
14 "propertyLabel": "name",
15 "mandatory": "true",
16 "type": "literal" } ] } ] } }

A BIBFRAME Profile is a document, or set of documents, that puts a
profile, e.g., for local cataloging practices, into a broader context of functional
requirements, domain models, guidelines on syntax and usage, and possible
data formats. This BIBFRAME Profile document describes an information
model and reference serialization to support a means for identifying and de-
scribing structural constraints. A profile defines a means in which a resource
can be constrained by enumerating the properties that may be used to de-
scribe it and by defining which property values may be given.

A BIBFRAME Profile is primarily a means for an application, e.g., a
cataloging tool, to guide a cataloger in the creation or modification of a
BIBFRAME record. As a BIBFRAME Profile contains formal syntactic con-
straints only, it is needed to be combined with human-readable information,
semantic expressions, and usage guidelines in order to be fully useful for a
community [206].

2.4.9 Schemarama

Schemarama [102] is a validation technique for specifying the types of sub-
graphs connected to a particular set of nodes in an RDF graph. Schemarama
allows to check if nodes in an RDF graph have certain required properties.
Schemarama is based on Schematron and the Squish RDF Query language
[222], an SQL-like query language for RDF, instead of SPARQL.

Schemarama is very similar to Schematron. It has two main parts, which
are represented as Squish queries. The first is the context Squish query used
to identify the nodes to be validated. The second is the test Squish query that
performs tests on the selected nodes. Error messages are displayed in case
selected nodes are not successfully validated against these tests [222].

2.4.10 Shapes Constraint Language (SHACL)

The W3C RDF Data Shapes Working Group currently develops SHACL
[35, 186, 187, 261], the Shapes Constraint Language,26 a language for describ-
ing and constraining the contents of RDF graphs. SHACL provides a high-
level RDF vocabulary similar to but more expressive than ReSh for describing
shape constraints. SHACL can be used (1) to communicate information about
data structures associated with some process or interface, (2) to generate data,

26 Open source reference implementation online available at: https://github.com/
TopQuadrant/shacl

https://github.com/TopQuadrant/shacl
https://github.com/TopQuadrant/shacl
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(3) to validate data, and (4) to drive user interfaces. [186] define the SHACL
language and its underlying semantics.

SHACL groups descriptive information and constraints that apply to a
given data node into shapes. SHACL defines what it means for an RDF graph
containing the data that is to be validated, referred to as the data graph, to
conform to the shapes graph, which includes shape definitions.

SHACL can be used to determine whether data graphs, containing infor-
mation about books and their authors, conform to the following constraints:
(1) Each book is either published or not (yet) published. (2) Books must have
at least one author. (3) Each author must be a person. (4) Persons must have
precisely one name which must be of the datatype string. A shapes graph
that defines these constraints has two shapes. The first, BookShape, contains
the three constraints on books. The second, PersonShape, encompasses the
constraint on persons:

1 SHACL Shapes Graph:
2 :BookShape
3 a sh:Shape ;
4 sh:scopeClass :Book ;
5 sh:property [
6 sh:predicate :isPublished ;
7 sh:allowedValues (true false) ;
8 sh:minCount 1 ;
9 sh:maxCount 1 ; ] ;

10 sh:property [
11 sh:predicate :author ;
12 sh:valueShape :PersonShape ;
13 sh:minCount 1 ; ] .
14 :PersonShape
15 a sh:Shape ;
16 sh:scopeClass :Person ;
17 sh:property [
18 sh:predicate :name ;
19 sh:datatype :string ;
20 sh:minCount 1 ;
21 sh:maxCount 1 ; ] .

A shape may include a scope defining which data nodes must conform
to the shape. The two example shapes include scope information which in
this case says that their constraints apply to all nodes that have an rdf:type
link to the classes Book and Person respectively. The property rdf:type is
used to determine which shapes a given node is expected to fulfill. The scope
includes all instances of the sh:scopeClass and its sub-classes, by following
rdfs:subClassOf links. The following data graph might be validated against
this shapes graph:

1 Data Graph:
2 :The-Adventures-Of-Sherlock-Holmes
3 a :Book ;
4 :isPublished true ;
5 :author :Doyle .
6 :Doyle
7 a :Person ;
8 :name "Doyle" .
9 :The-Hobbit
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10 a :Book ;
11 :isPublished "yes" ;
12 :author :Tolkien .
13 :Tolkien
14 a :Person ;
15 :name "Tolkien", "J.R.R. Tolkien" .

Conformance to the shapes graph can be programmatically checked by
processors, i.e., by SHACL engines. The process of checking conformance is
referred to as validation. When a data node is checked for conformance to
a shape, that node is called the focus node. The SHACL engine validates
the nodes The-Adventures-Of-Sherlock-Holmes and The-Hobbit against the
shape BookShape. Validating the first node determines that The-Adventures-
Of-Sherlock-Holmes satisfies the constraints in BookShape, along the way de-
termining that its author Doyle satisfies the constraints in PersonShape. Val-
idating the third node determines that The-Hobbit violates the constraint on
values for the predicate isPublished, since ”yes” is not contained in the list of
the allowed values. The-Hobbit also violates the constraint on values for the
predicate author, since Tolkien violates the PersonShape constraint on the
maximum number of values for the predicate name.

The output of a SHACL constraint validation process is a set of validation
results, a validation report which indicates whether or not the data graph
conforms to the shapes graph. If any constraints are not satisfied, then the
validation report includes one or more violations indicating the source of the
problem. SHACL includes an RDF vocabulary to represent such validation
results together with structural information that may provide guidance on
how to fix a violation, as well as human-readable messages.

In addition to the high-level vocabulary SHACL provides, native con-
straints can be associated with shapes using SPARQL and similar execution
languages like JavaScript. Native constraints in a language like SPARQL typ-
ically provide a lot of flexibility. However, SPARQL-based constraints may be
hard to understand and repetitive.

Templates can be used to encapsulate and parameterize such native
queries. Templates make it possible to generalize, so that constants get sub-
stituted by arguments. This allows the query logic to be reused in multiple
places, without having to write any new SPARQL query. SHACL functions
can be called within SPARQL queries to encapsulate complex logic of other
SPARQL queries or executable logic in other languages.

Various W3C standards, including RDFS and OWL, provide semantic in-
terpretations for RDF graphs that allow additional RDF statements to be in-
ferred from explicitly given assertions. What the correct answers to a SPARQL
query are, depends on the used entailment regime [124]. SPARQL 1.1 [134]
defines a set of conditions that have to be met when defining what correct re-
sults are for SPARQL queries under different entailment regimes. By default,
SHACL does not assume any entailment regime to be activated on the data
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graph. However, a SHACL engine can be instructed to ensure that a given
entailment is activated.

2.5 RDF Validation Semantics

In this section, we (1) define what semantics is and provide intuitive examples
for each semantic assumption, (2) compare the semantics for RDF and XML
validation on the one side and for OWL reasoning on the other side, and (3)
explain why OWL can be considered as a constraint language under the same
semantics adopted when validating RDF data.

A knowledge base is a set of sentences. These sentences are related but
not identical to the sentences of English and other natural languages. Each
sentence is expressed in a knowledge representation language and according
to its syntax. The semantics or meaning of sentences defines the truth of each
sentence which must be either true or false [273].

The validation of RDF and XML data and reasoning in OWL assume dif-
ferent semantics (see Figure 2.1) which may lead to different validation results
when applied to particular constraint types. Reasoning requires the open-world
assumption (OWA) with the non-unique name assumption (nUNA), whereas
validation is classically based on the closed-world assumption (CWA) and the
unique name assumption (UNA).

Table 2.1. Semantics for RDF Validation, XML Validation, and OWL Reasoning

RDF Validation XML Validation OWL Reasoning
CWA vs. OWL CWA CWA OWA
UNA vs. nUNA UNA UNA nUNA

2.5.1 Closed-World Assumption vs. Open-World Assumption

The ambiguity in semantics is one of the main reasons why OWL has
not been adopted as the standard constraint language for RDF validation in
the past. Reasoning in OWL is based on the open-world assumption (OWA)
[224, 267], i.e., a statement cannot be inferred to be false if it cannot be proved
to be true which fits its primary design purpose to represent knowledge on
the World Wide Web. As each book must have a title and The-Odyssey is
a book, there must be a title for The-Odyssey as well. In an OWA setting,
this constraint does not cause a violation, even if there is no explicitly defined
title, since there must be a title for this book which we may not know.

As RDF validation has its origin in the XML world, many RDF validation
scenarios require the closed-world assumption (CWA) [74, 224, 267], i.e., a
statement is inferred to be false if it cannot be proved to be true. Thus,
classical constraint languages are based on the CWA where constraints need
to be satisfied only by named individuals. In the example, the CWA yields to a
violation in case there is no explicitly defined title for the book The-Odyssey.
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Publications must have at least one author is another example of a con-
straint for which changed underlying semantics leads to differences regarding
validation results. In a CWA setting, a publication without an explicitly stated
author violates the constraint, whereas with OWA semantics, a publication
without an explicitly stated author does not raise a violation as the constraint
entails that there must be an author for a particular publication which we may
not know.

2.5.2 Unique Name Assumption vs. Non-Unique Name
Assumption

OWL is based on the non-unique name assumption (nUNA) whereas RDF
validation requires that different names represent different objects (unique
name assumption (UNA)) [300]. Although OWL does not assume the UNA,
OWL has the constructs owl:sameAs and owl:differentFrom to explicitly state
that two names are the same or different. For functional properties, e.g.,
it makes a difference with regard to validation results if the UNA or the
nUNA is assumed. As the property title is functional, a book can have at
most one distinct title. UNA causes a clash if the book One-Thousand-And-
One-Nights has more than one title. For nUNA, however, reasoning concludes
that the title One-Thousand-And-One-Nights must be the same as the title
Tausendundeine-Nacht which resolves the violation.

Assuming the OWA and the nUNA when validating RDF data would limit
validation possibilities. RDF validation won’t be that restrictive and there-
fore we won’t get the intended validation results. This is the reason why (1)
[82, 228, 300] propose the use of OWL expressions with the CWA to express
integrity constraints, (2) [300] suggest an alternative semantics for OWL us-
ing the CWA and the UNA so that it could be used to validate integrity
constraints, and (3) [254] claims that Description Logics and therefore OWL
axioms can be interpreted in a closed-world setting and used for constraint
checking.

When using OWL axioms in terms of constraints, we adopt the same se-
mantics that is used when validating RDF data. The main criticism against
such an approach is that it associates an alternative semantics with the ex-
isting OWL syntax, which can be misleading for users. Note that in any case,
OWL inference engines cannot be used for checking constraints and that a
dedicated implementation is required.





3

Vocabularies for Representing Research Data
and its Metadata

The social, behavioral, and economic (SBE) sciences require high-quality data
for their empirical research. For more than a decade, members of the SBE
sciences community have been developing and using a metadata standard,
composed of almost twelve hundred metadata fields, known as the Data Doc-
umentation Initiative (DDI) [95], an XML format to disseminate, manage,
and reuse data collected and archived for research [316]. In XML, the defi-
nition of schemas containing constraints on data and the validation of data
according to these constraints is commonly used to ensure a certain level of
data quality. With the rise of the Web of Data, data professionals and insti-
tutions are very interested in having their data be discovered and used by
publishing their data directly in RDF or at least accurate metadata about
their data to facilitate data integration.

There are different types of research data and related metadata, but be-
cause of the lack of respective RDF vocabularies, just a few of them can be
expressed in RDF. Having these missing vocabularies enables (1) to represent
all types of research data and its metadata in RDF and (2) to validate RDF
data according to constraints extractable from these vocabularies.

To close this gap by developing suitable RDF vocabularies, the RDF Vo-
cabularies Working Group,1 an international working group hosted by the
international standards organization DDI Alliance,2 has been established in
2011. Being part of the working group and in collaboration with Linked Data
community members and statistical domain experts, i.e., representatives of
national statistical institutes and national data archives as well as core mem-
bers of the DDI Alliance Technical Committee,3 we have developed three
vocabularies:

• The DDI-RDF Discovery Vocabulary (DDI-RDF) [42] is based on the
XML standard DDI and supports the discovery of metadata on unit-record

1 http://www.ddialliance.org/alliance/working-groups#RDF
2 http://www.ddialliance.org
3 http://www.ddialliance.org/alliance/working-groups#tc

http://www.ddialliance.org/alliance/working-groups#RDF
http://www.ddialliance.org
http://www.ddialliance.org/alliance/working-groups#tc
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data, the type of data most often used in research within the SBE sciences,
i.e., data collected about individuals, businesses, and households. It can be
applied to research data from many different domains, rather than being
specific to a single set of domain data.

• Physical Data Description (PHDD) [321] is a vocabulary to describe data
in tabular format and its physical properties. The data could either be
represented in form of records with character-separated values (CSV) or
with fixed length.

• The SKOS Extension for Statistics (XKOS) [84] is a vocabulary to de-
scribe the structure and textual properties of formal statistical classifi-
cations as well as relations between classifications and concepts, and to
introduce refinements of SKOS semantic properties to allow the use of
more specific relations between concepts.

Throughout this thesis, several RDF vocabularies for representing differ-
ent types of research data and related metadata (DDI-RDF, SKOS, QB) as
well as various DDI XML specifications (DDI-Codebook, DDI-Lifecycle, DDI-
Lifecycle MD) serve as intuitive case studies for (1) validating RDF data and
(2) the in Section 4 proposed approach enabling to directly validate XML
using common RDF validation tools.

In the remainder of the chapter, we first give an overview of the types
of research data and related metadata and which vocabularies are commonly
used to represent them in RDF (see Section 3.1). Second, we define each type
of research data and related metadata as stated by data professionals, delin-
eate their transition in the research data lifecycle, and depict how metadata
on each type of research data is represented using XML standards before re-
spective RDF vocabularies have been developed. The focus lies on unit-record
data, since with DDI-RDF we have developed a vocabulary to represent meta-
data on this kind of research data. We conclude this section by presenting the
model-driven further development of the DDI standard itself whose require-
ments are oriented on experiences made with DDI-RDF (see Section 3.2).

Section 3.3 serves to provide a detailed depiction of how metadata about
unit-record data is represented using DDI-RDF. First, we separately look at
the motivations having such a vocabulary at hand for individuals from (1)
the Linked Data community and (2) data archives, research institutes, data
libraries, and government statisticians. Second, we present an overall picture of
the conceptual model of the vocabulary. When defining the conceptual model,
we reuse existing vocabularies wherever possible and extend them where needs
are almost but not completely covered. We base the design of the conceptual
model on use cases that represent real information needs of researchers. Since
DDI-RDF only covers a small subset of the underlying XML standard DDI
for the purpose of discovery, it is worthwhile to have relationships to and from
original DDI-XML files.
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3.1 Common Vocabularies

In this chapter, we give an overview of the types of research data and related
metadata and present in form of a complete representative running example4

which vocabularies5 are commonly used to represent each type in RDF.

3.1.1 Unit-Record Data and Aggregated Data

The data most often used in research within the SBE sciences is unit-record
data, i.e., data collected about individuals, businesses, and households, in form
of responses to studies or taken from administrative registers such as hospital
records, registers of births and deaths. A study represents the process by
which a data set was generated or collected. The range of unit-record data is
very broad - including census, education, and health data as well as business,
social, and labor force surveys. This type of research data is held within data
archives or data libraries after it has been collected, so that it may be reused
by other researchers for secondary analyses.

By its nature, unit-record data is highly confidential and access is of-
ten only permitted for qualified researchers who must apply for access. Re-
searchers typically represent their results as aggregated data in form of multi-
dimensional tables with only a few columns, so-called variables such as sex or
age. Aggregated data, which answers particular research questions, is derived
from unit-record data by statistics on groups or aggregates such as counts,
frequencies, and arithmetic means. Aggregated data is often generated by tab-
ulating or aggregating unit-record data sets. For example, if an observation in
a census table indicates the population of a certain age group in a particular
region, then this fact was obtained by aggregating that number of individual
records from a unit-record data set. The purpose of publicly available aggre-
gated data is to get a first overview and to gain an interest in further analyses
on the underlying unit-record data. Aggregated data is published in form of
CSV files, allowing to perform further calculations on the data.

For more detailed analyses, researchers refer to unit-record data includ-
ing additional variables needed to answer subsequent research questions like
the comparison of studies between countries. Eurostat, the statistical office of
the European Union, provides research findings in form of aggregated data
(downloadable as CSV files) and its metadata on European level that enable
comparisons between countries. Formal childcare is an example of an aggre-
gated variable which captures the measured availability of childcare services in
percent over the population in European Union member states by the dimen-
sions year, duration, age of the child, and country. Variables are constructed
out of values (of one or multiple datatypes) and/or code lists. The variable

4 Complete running example in RDF on GitHub
5 RDF vocabularies commonly used to represent different types of research data

and related metadata on GitHub
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age, e.g., may be represented by values of the datatype xsd:nonNegativeInteger
or a code list of age clusters (e.g., ’0 to 10’ and ’11 to 20’).

A representative RDF validation case study within the SBE sciences is
to ensure correctness when comparing variables between data collections of
different countries. Several vocabulary-specific constraints on RDF data are
checked for each data collection to determine if variables measuring age -
collected for different countries (ageDE , ageUK) - are comparable: (1) variable
definitions must be available, (2) for each code a human-readable label has
to be specified, (3) code lists must be structured properly, and (4) code lists
must either be identical or at least similar. If a researcher only wants to get
a first overview of the comparability of variables (use case 1), covering the
first three constraints may be sufficient, i.e., the violation of the first three
constraints is more serious than the violation of the last constraint. If the
intention of the researcher is to perform more sophisticated comparisons (use
case 2), however, the user may raise the severity level of the last constraint.

3.1.2 Vocabulary to Represent Aggregated Data and its Metadata

The RDF Data Cube Vocabulary (QB) [88] is a W3C recommendation for
representing data cubes, i.e., multi-dimensional aggregated data and its meta-
data, in RDF [87]. A qb:DataStructureDefinition contains metadata on the
data collection. The variable formal childcare is modeled as qb:measure, since
it stands for what has been measured in the data collection. Year, duration,
age, and country are qb:dimensions. The actual data values, i.e., the avail-
ability of childcare services in percent over the population, are collected in
a qb:DataSet representing an aggregated data set. Each data value is repre-
sented inside a qb:Observation containing the values for each dimension [91].

A well-formed RDF Data Cube is an RDF graph describing one or more
instances of qb:DataSet for which each of the 22 integrity constraints, de-
fined within the QB specification, passes [88]. Each integrity constraint is
expressed as narrative prose and, where possible, as a SPARQL ASK query
or query template. If the ASK query is applied to an RDF graph then it will
return true if that graph contains one or more QB instances which violate the
corresponding constraint.

The development of QB is based on Statistical Data and Metadata eX-
change (SDMX) [161, 290], an XML standard to describe aggregated data,
and on the Statistical Core Vocabulary (SCOVO) [87, 141, 142], an RDFS-
based, lightweight, and extensible vocabulary for representing statistical data
on the Web. SCOVO offers a basic core of classes and properties for rep-
resenting data sets, multiple dimensions, and statistical items. [319] extend
SCOVO with a vocabulary enabling the connection of SCOVO-described data
sets with external vocabularies to perform more complex data analyses and
improve discoverability and reusability.
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3.1.3 Vocabulary to Represent Metadata on Tabular Data

QB provides for the description of the structure of data cubes, but also
for the representation of the cube data itself, that is, the observations that
make up the cube data set [87]. This is not the case for DDI-RDF, which only
describes the structure of a data set, but is not concerned with representing
the actual data in it, which is assumed to sit in a data file, e.g., in a CSV
file or in a proprietary statistical package file format. To describe such data,
we have developed the DDI based Physical Data Description (PHDD) [321],
a vocabulary to represent metadata about data in tabular format as well as
its physical properties in RDF (see Figure 3.1). The data could either be
represented in records with character-separated values (CSV) or with fixed
length, which allows to perform further calculations on the data.

Eurostat provides a CSV file, a two-dimensional table (phdd:Table) about
the variable formal childcare which is structured by a table structure (phdd:Table
Structure, phdd:Delimited) including information about the character set
(ASCII ), the variable delimiter (,), the new line marker (CRLF ), and the
first line where the data starts (2 ). The table structure is related to ta-
ble columns (phdd:Column) which are described by column descriptions
(phdd:DelimitedColumnDescription). For the column containing the cell val-
ues in percent, the column position (5 ), the recommended data type (xsd:non
NegativeInteger), and the storage format (TINYINT ) are given.

In December 2015, the CSV on the Web Working Group6 has published
a group of W3C specifications [296–298], including (1) CSV on the Web
(CSVW) [301–303], a metadata vocabulary for tabular data, (2) standard
methods to find data and metadata, and (3) standard mapping mechanisms
transforming CSV to other formats. CSVW comprises rich possibilities for
defining constraints on cell values. Even though PHDD has been developed
earlier and independently from CSVW, PHDD and CSVW have an overlap
in the main description of tabular data in CSV format. Compared to CSVW,
PHDD can also be used to describe tabular data with fixed record length,
data with multiple records per case, and programs which generated tabular
data.

3.1.4 Vocabulary to Represent Metadata on Unit-Record Data

For more detailed analyses, we refer to the unit-record data collected for
the series EU-SILC (European Union Statistics on Income and Living Con-
ditions).7 Where data collection is cyclic, data sets may be released as series,
where each cycle produces one or more data sets. The aggregated variable
formal childcare is calculated on the basis of six unit-record variables (i.a.,
Education at pre-school) for which detailed metadata is given (i.a., code lists)

6 https://www.w3.org/2013/05/lcsv-charter
7 http://www.gesis.org/en/missy/metadata/EU-SILC

https://www.w3.org/2013/05/lcsv-charter
http://www.gesis.org/en/missy/metadata/EU-SILC
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Fig. 3.1. Physical Data Description (PHDD)
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enabling researchers to replicate the results shown in aggregated data ta-
bles. The DDI-RDF Discovery Vocabulary (DDI-RDF) [42] is used to rep-
resent metadata on unit-record data in RDF. The series (disco:StudyGroup)
EU-SILC contains one study (disco:Study) for each year (dcterms:temporal)
of data collection. The property dcterms:spatial points to the countries for
which the data has been collected. The study EU-SILC 2011 contains eight
unit-record data sets (disco:LogicalDataSet) including unit-record variables
(disco:Variable) like the six ones needed to calculate the aggregated variable
formal childcare.

3.1.5 Vocabulary to Represent Knowledge Organization Systems

The Simple Knowledge Organization System (SKOS) [159, 219] is a vocab-
ulary to represent knowledge organization systems such as thesauri, classifica-
tion schemes, and taxonomies. Using SKOS, a knowledge organization system
is expressible as machine-readable data in a machine-processable standard
format for the Semantic Web. It can then be exchanged between computer
applications and published in a machine-readable format in the Web [159].
SKOS provides high interoperability with other standards, formats, and ap-
plications as it is based on RDF, the standard model for data interchange
on the Web. SKOS is used to represent term relations, term hierarchies, and
the structure and semantics of vocabularies. A vocabulary is typically repre-
sented as a skos:ConceptScheme that holds multiple skos:Concepts which can
be linked to other skos:Concepts by hierarchical and associative properties
that are oriented on relations of the ISO norms for thesauri like skos:broader,
skos:narrower, and skos:related.

Thesauri organize complex relations between terms even on the lexical
level. The SKOS Simple Knowledge Organization System eXtension for Labels
(SKOS-XL) [218] offers additional support for describing and linking lexical
entities. This provides a complexity of relationships between terms which is
needed by several vocabularies.

SKOS is reused multiple times to build SBE sciences vocabularies. The
codes of the variable Education at pre-school (measuring the number of educa-
tion hours per week) are modeled as skos:Concepts and a skos:OrderedCollection
organizes them in a particular order within a skos:memberList. A variable
may be associated with a theoretical concept (skos:Concept) and hierar-
chies of theoretical concepts are built within a skos:ConceptScheme of a se-
ries using skos:narrower. The variable Education at pre-school is assigned to
the theoretical concept Child Care which is the narrower concept of Educa-
tion, one of the top concepts of the series EU-SILC. Controlled vocabularies
(skos:ConceptScheme), serving as extension and reuse mechanism, organize
types (skos:Concept) of descriptive statistics (disco:SummaryStatistics) like
minimum, maximum, and arithmetic mean.
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3.1.6 Vocabulary to Represent Metadata on Formal Statistical
Classifications

A formal statistical classification like the International Standard Classi-
fication of Occupations is a hierarchical concept scheme including concepts,
associated numeric codes, short textual labels, definitions, and longer descrip-
tions that include rules for their application. The use of statistical classifica-
tions is very common in research data sets - they are treated as SKOS concept
schemes in DDI-RDF, but in some cases those working with statistical classi-
fications desire more expressive capabilities than SKOS provides. To support
such researchers, we developed XKOS, the SKOS Extension for Statistics [84]
to allow for a more complete description of such classifications [123] and to
introduce refinements of SKOS semantic properties [85].

XKOS extends SKOS for the needs of statistical classifications. It does
so in two main directions. First, it defines a number of terms that enable to
represent statistical classifications with their structure and textual properties
as well as different types of relations between classifications and concepts.
Second, it refines SKOS semantic properties to allow the use of more specific
relations between concepts. These semantic properties can be used for the
representation of classifications or any other case where SKOS is employed
[123]. While the use of XKOS is not required, DDI-RDF and XKOS are de-
signed to work in complementary fashion, whereby SKOS properties may be
substituted by additional XKOS properties.

A question, typically asked by researchers, could be to query all the
data sets (disco:LogicalDataSet) which have a specific classification and to
query on semantic relationships of classifications using XKOS properties. By
means of these properties not only hierarchical relations can be queried but
also part of relationships (xkos:hasPart), more general (xkos:generalizes) and
more specific (xkos:specializes) concepts, and positions of concepts in lists
(xkos:previous, xkos:next).

Figure 3.2 visualizes how XKOS is used to represent statistical classifica-
tions in RDF - inspired by ANZSIC, the Australian and New Zealand Standard
Industrial Classification, a classification covering the field of economic activi-
ties. A small excerpt is shown here, limited to the classification object itself,
its levels, one item of the most detailed level ( L672000¡), and its parent
items. Note that the URIs employed in this example are entirely fictitious,
since the ANZSIC has not yet been published in RDF.

On the left of the figure is the skos:ConceptScheme instance that corre-
sponds to the ANZIC 2006 classification scheme, with its various SKOS and
DC properties. Additional XKOS properties indicate that the classification
has four levels (xkos:ClassificationLevel) and covers (xkos:covers) the field
of economic activities, represented here as a concept from the EuroVoc the-
saurus. In this case, the coverage is intended to be exhaustive and without
overlap, so xkos:coversExhaustively and xkos:coversMutuallyExclusively could
have been used together instead of xkos:covers.
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Fig. 3.2. Representing the Formal Statistical Classification ANZSIC in RDF
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The four levels are organized as an rdf:List which is attached to the
classification by the xkos:levels property. Some level information has been
represented on the top level, for example its depth in the classification
(xkos:depth) and the concept that characterizes the items it is composed of
(xkos:organizedBy). In the same fashion, concepts of subdivision, group, and
class could be created to describe the items of the lower levels.

The usual SKOS properties connect the classification items to their re-
spective level (skos:member) and to the classification (skos:inScheme or its
specialization skos:topConceptOf ) for the items of the first level. Similarly,
skos:narrower expresses the hierarchical relations between the items, but the
sub-properties defined in the XKOS specification could also be used instead.
For example, xkos:hasPart could express the partitive relation between subdi-
visions and groups. For clarity, the properties of the classification items (code,
labels, notes) have not been included in the figure.

3.1.7 Vocabulary to Represent Metadata on Data Sets Inside of
Data Collections

The Data Catalog Vocabulary (DCAT) [212] enables to describe data sets
inside of data collections like portals, repositories, catalogs, and archives which
serve as typical entry points when searching for data. DCAT makes few as-
sumptions about the kind of data sets being described and focuses on general
metadata about data sets and different ways of distributing and accessing
data sets, including their availability in multiple formats.

Users search for aggregated and unit-record data records (dcat:Catalog
Record) in data catalogs (dcat:Catalog). As search differs depending on users’
information needs, they may only search for records’ metadata (e.g., dc-
terms:title, dcterms:description), or they may formulate more sophisticated
queries on aggregated and unit-record data sets (dcat:Dataset) or their distri-
butions (dcat:Distribution) which are part of the records. Users often search
for data sets covering particular topics (dcat:keyword, dcat:theme), time peri-
ods (dcterms:temporal), locations (dcterms:spatial), or for certain formats in
which the data distribution is available (dcterms:format).

The combined usage of PHDD, DDI-RDF, and DCAT enables the creation
of data repositories providing metadata for the description of collections, data
discovery, and the processing of the data. Descriptions in PHDD could be
added to web pages which enables an automatic processing of the data by
programs.

3.2 Representing Metadata on Research Data

For data professionals - researchers, data librarians, and statisticians - the
term data refers to some very specific types of what most people think of as
data. For those in the Linked Data community, data is a very broad term
indeed, embracing basically anything accessible on the Web. In developing an
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RDF vocabulary for describing research data, it is important to understand
the narrower “professional” definition of data, since it is this which is to be
described using the new vocabulary, not data in the more general sense. The
narrower term, as used by data specialists, is what is meant unless otherwise
stated.

So, what does the term data mean? It actually has several distinct mean-
ings: raw data; unit-record data (also called microdata); and aggregated data
(also called tabulated data). We characterize each type here, as they serve
different purposes. In order to understand them, it is important to under-
stand how each fits into the data lifecycle, as data is collected and processed
to support research.

Raw data8 refers to the set of numbers and other values (often coded values
coming from concept schemes or classifications) which are the direct input into
the research process. These are often the result of surveys. For instance, each
person responding to a survey might be asked: “What is your gender?”. The
answer would be either Male or Female, which is a very simple example of a
concept scheme for gender. In the data set, the responses might be recorded as
1 (for Male) or 2 (for Female). Raw data can also come from other sources,
such as devices performing measurements, or from administrative registers,
i.e., databases containing information collected for non-research purposes, but
which are useful for research, such as registers of births and deaths, and clinical
systems in hospitals.

Once collected, raw data is processed further, to clean up values which are
wrong or likely to distort the research. Some other values are processed into
a form which is easy to work with. If there are missing values, these need to
be handled: for instance, it has to be determined why they are missing. The
result of this processing is a useful unit-record data set.

The structure of unit-record data is very specific: think of a table, where
each column contains a particular type of value (e.g., gender, age, or a response
to a particular question in a survey) and each row represents the responses for
a single unit (typically an individual, a household, or a business). By further
processing the (usually large) number of cases, a different type of data is
produced – aggregated or tabulated data.

Take, for example, the following unit-record data set, recording gender,
age, highest education degree attained, and current place of habitation:

Table 3.1. Unit-Record Data Set

Case ID Gender Age Degree Habitation
1 Male 22 High School Arizona
2 Female 36 PhD Wisconsin
3 Male 50 PhD New Mexico
4 Female 65 PhD Texas
5 Male 23 BA Vermont

8 http://stats.oecd.org/glossary

http://stats.oecd.org/glossary
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In analyzing this data set, we might decide that older people tend to have
higher degrees of education, since no one under the age of 36 has a PhD,
and of those under the age of 36, only 50% have a college degree of any
type. We could aggregate (or tabulate) the unit-record data into the following
aggregated data set:

Table 3.2. Aggregated Data Set

Age % with High School % with BA % with PhD
Age   36 years 50 50 0

Age ¡= 36 years 0 0 100

Although we have too few cases, we can see that by focusing on some
of the columns in our unit-record data, we can create a table: in this case,
age by educational degree. Such tabulations are used by researchers analyzing
data to prove or disprove research hypotheses. Tabulations are also created
by government statisticians working to support policy decisions.

When we consider the types of data which exist on the Web, and which
could be represented on the Web as the result of open data initiatives, we can
see that at least the second categories (unit-record data and aggregated data)
would be very useful, and in some cases even raw data might be useful, as in
the case of government expenditures, for example.

It is very important to understand the distinctions between these types of
data, because they are useful for different purposes. Aggregated data can be
used to draw many useful types of charts and visualizations, but this cannot
be done usefully with unit-record data or raw data, to make a simple point.
For most of us, the aggregated data is very helpful and easy to understand –
unit-record data requires a higher degree of statistical literacy to make sense
of. Both, unit-record and aggregated data is understood as research data. This
means any data which is used for research not just data which is collected for
research purposes.

When working with data of any type, it is not the data alone which is
needed – also required to understand and analyze data is a very detailed
level of metadata. Metadata is structured information that describes, explains,
locates, or otherwise makes it easier to retrieve, use, or manage data [232].
How is a column in my unit-record data defined? Where do the values come
from? What was the population being surveyed, and how was it selected?
This type of metadata includes, but goes well beyond the metadata found in
Dublin Core, for example. It is highly specialized, and is specific to the type
of data being described.

Within the world of data professionals, two metadata standards have
emerged which are becoming widely adopted. For raw data and unit-record
data, the metadata standard is called the Data Documentation Initiative
(DDI) (see Section 3.2). For metadata on aggregated data, the XML standard
is known as the Statistical Data and Metadata eXchange (SDMX) [161, 290].
[130] describe these two metadata standards, their scope, overlap, and differ-
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ences. They also provide some information about which of them may be more
appropriate for use in a particular application. In addition, [307] explores their
relationship and interoperability. SDMX focuses on processing and exchang-
ing aggregated data, DDI on documenting the aggregation processes, in case
they are of interest to researchers. Guidelines recommend practices for creat-
ing interoperable data sets and related metadata using SDMX which enables
a more efficient exchange of comparable data and metadata [291].

The RDF Data Cube Vocabulary (QB) is based on SDMX. QB maps the
SDMX information model to an ontology and is therefore compatible with the
cube model that underlies SDMX. DDI and SDMX have traditionally made
efforts to align their content [130]. Similarly, some of the developers of the
DDI-RDF vocabulary were also involved in the development of QB, allowing
the RDF versions of these standards to retain that alignment.

3.2.1 Data Documentation Initiative

The Data Documentation Initiative (DDI) [95] is an acknowledged in-
ternational standard for the documentation and management of unit-record
research data in the SBE sciences. DDI describes social sciences data, data
covering human activity, and other data based on observational methods mea-
suring real-life phenomena [316, 320].

Archives and data libraries have no control over the form of the data
deposited with them by researchers, which is reflected by the DDI standard –
it is an XML format for the large amount of metadata needed to understand
the wide range of data formats used by researchers at a very detailed level.
DDI metadata accompanies and enables data conceptualization, collection,
processing, distribution, discovery, analysis, re-purposing, and archiving. DDI
does not invent a new model for statistical data. It rather formalizes state-of-
the-art concepts and common practice in this domain.

Where a metadata standard such as Dublin Core has dozens of metadata
fields, DDI has almost twelve hundred. The metadata is sufficient to support
a wide range of uses, including management of data holdings within archives,
discovery and dissemination, transformation of the data between different
proprietary software formats, and a thorough documentation of the data and
how and why it was collected. The key to the reuse and management of data is
always metadata, and this has been a major theme within the SBE community
for many years.

DDI focuses on both unit-record and aggregated data, but it has its
strength in unit-record data. Aggregated data (e.g., multidimensional tables)
are likewise covered by DDI. DDI provides summarized versions of the unit-
record data in the form of statistics like means or frequencies. Publicly acces-
sible metadata of good quality is important for finding the right data. This is
especially the case when access to unit-record data is restricted as a disclosure
risk of the observed people exists.
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Goals

DDI supports technological and semantic interoperability in enabling and pro-
moting international and interdisciplinary access to and use of research data.
Structured metadata with high quality enables secondary analyses without
the need to contact the primary researcher who collected the data. Compre-
hensive metadata (potentially along the whole data lifecycle) is crucial for
the replication of analysis results in order to enhance the transparency. DDI
enables the reuse of metadata of existing studies (e.g., questions, variables)
for designing new studies, an important ability for repeated surveys and for
comparison purposes [25, 221].

Users

A large community of data professionals, including data producers (e.g., of
large academic international surveys), data archivists, data managers in na-
tional statistical agencies and other official data producing agencies, and in-
ternational organizations use DDI.

It should be noted that the typical use of DDI is within controlled envi-
ronments: as the data is itself so often highly confidential, the metadata is
often maintained and used within closed systems, except in those cases where
it is exposed for discovery purposes, typically on websites. DDI has been used
on a large scale: three excellent examples are its use within the Consortium
of European Social Science Data Archives (CESSDA);9 its use by the Inter-
national Household Survey Network (IHSN) community,10 made up of more
than 90 statistical agencies in the developing world; and its use by the largest
SBE data archive in the US, the Inter-university Consortium for Political and
Social Research (ICPSR);11 but there are many other examples.

The international standards organization DDI Alliance hosts a compre-
hensive list of projects using the DDI.12 Academic users include the UK
Data Archive13 at the University of Essex, the DataVerse Network14 at the
Harvard-MIT Data Center, and ICPSR at the University of Michigan. Official
data producers in more than 50 countries include the Australian Bureau of
Statistics15 and many national statistical institutes of the Accelerated Data
Program16 for developing countries. Examples for international organizations

9 http://www.cessda.net
10 http://www.ihsn.org
11 https://www.icpsr.umich.edu
12 http://www.ddialliance.org/ddi-adopters
13 http://www.data-archive.ac.uk
14 http://dataverse.org
15 http://abs.gov.au
16 http://adp.ihsn.org

http://www.cessda.net
http://www.ihsn.org
https://www.icpsr.umich.edu
http://www.ddialliance.org/ddi-adopters
http://www.data-archive.ac.uk
http://dataverse.org
http://abs.gov.au
http://adp.ihsn.org
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are UNICEF,17 the Multiple Indicator Cluster Surveys,18 The World Bank,19

and The Global Fund to Fight AIDS, Tuberculosis and Malaria.20 [129] intro-
duces DDI to those coming from national statistics institutes, as there is a
large amount of information regarding DDI available today and sometimes it
is difficult to know where to start and much of it comes from domains which
are not familiar to those working with official statistics.

Data Lifecycle

DDI supports the entire research data life cycle and is specified using XML
Schemas - organized in multiple modules corresponding to the individual
stages of the data lifecycle. Common understanding is that both statistical
data and metadata is part of a data lifecycle (see Figure 3.3). Data documen-
tation is a process, not an end condition where a final status of the data is
documented. Rather, metadata production should begin early in a project and
should be done when it happens. The metadata can then be reused along the
data lifecycle. Such practices incorporate documenting as part of the research
method [168]. A paradigm change is enabled: on the basis of the metadata,
it becomes possible to drive processes and generate items like questionnaires,
statistical command files, and web documentation, if metadata creation is
started at the design stage of a study in a well-defined and structured way.
Multiple institutions are involved in the data lifecycle which is an interactive
process with multiple feedback loops.

Fig. 3.3. Data Lifecycle

Relationships to other Metadata Standards

The Dublin Core Metadata Element Set [104] allows for the capture and ex-
pression of native Dublin Core elements, used either as references or as de-
scriptions of a particular set of metadata. This is used for citation of the

17 http://www.unicef.org
18 http://www.unicef.org/statistics/index 24302.html
19 http://www.worldbank.org
20 http://www.theglobalfund.org
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http://www.theglobalfund.org
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data, parts of the data documentation, and external material in addition to
the richer, native means of DDI. The DCMI Metadata Terms [103] have been
applied if suitable for representing basic information about publishing objects
on the Web as well as for has part relationships. This approach supports ap-
plications which understand Dublin Core, but which do not understand DDI.

DDI is aligned with other metadata standards as well: with the Statistical
Data and Metadata eXchange (SDMX) [161, 290] for exchanging aggregated
data, ISO/IEC 11179 (metadata registry) [165] for building data registries
such as question, variable, and concept banks, ISO 19115 [162] for supporting
users of geographic information systems, and the PREMIS Data Dictionary
for Preservation Metadata [259] to support the preservation of digital objects
and ensure their long-term usability.

3.2.2 Overview of DDI Specifications

In the following, we give an overview of what the DDI Alliance work prod-
ucts21 are, what purpose they serve, and also address the coming develop-
ments. The overarching aim of the DDI Alliance is to create an international
standard for describing data from the SBE sciences. Since its inception in
1995, the development of the DDI Alliance work products has moved in step
with the evolving needs of the user communities seeking to document the data
and the processes around its collection. [127, 194, 265, 314, 315] describe the
foundations of the DDI metadata specifications in detail.

The work products have also evolved alongside developments in technology.
XML, in which the current work products are expressed, has itself changed
and developed. The standards to which the work products are aligned such
as Dublin Core and most recently the Generic Statistical Information Model
(GSIM) [199], have also evolved and the technologies available to implement
the work products have matured. Current work products include:
• DDI-Codebook [93] is an XML structure for describing codebooks or data

dictionaries, for a single study.
• DDI-Lifecycle [94], which is also expressed in XML, expands on the cov-

erage of a single study along the data lifecycle and can describe several
waves of data collection. It is very useful when dealing with serial data
collection as is often seen in data production within statistical offices and
long-standing research projects.
• RDF Vocabularies22 currently cover three areas: one for describing data

sets for the purposes of discovery on the Web (DDI-RDF), one for describ-
ing the structures of individual data sets (PHDD), and one for describing
statistical classifications (XKOS). These vocabularies are based on the
DDI-Codebook and DDI-Lifecycle XML structures, but are identical to
neither. They are designed to be used in combination, and as such are
non-duplicative (see Section 3.3).

21 http://www.ddialliance.org/work-products-of-ddi-alliance
22 http://www.ddialliance.org/Specification/RDF

http://www.ddialliance.org/work-products-of-ddi-alliance
http://www.ddialliance.org/Specification/RDF
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• DDI-Lifecycle MD (Model-Driven) [96] is the draft which is currently un-
der development. The further development of the DDI standard itself is
model-driven in order to solve the problems associated with the XML
Schema centric development of standard specifications. The model-driven
development enables to break the model down to diverse concrete serial-
izations such as RDFS/OWL, XML Schema, relational database schemas,
and Java libraries.

3.2.3 DDI-Codebook

DDI-Codebook [93] is the original work product of the DDI Alliance. DDI-
Codebook is an XML structure for describing codebooks or data dictionaries
for a single study, i.e., a single wave of data collection. DDI-Codebook is
designed to be used after-the-fact: it assumes that a data file exists as the
result of a collection, and is then described using the XML structure provided
by the specification.

DDI-Codebook is heavily used, being the structure behind such tools as
Nesstar,23 a system for the dissemination of statistical information and related
documentation which is used by data archives within CESSDA. The largest
single user-base is probably the IHSN which provides tools for documenting
studies conducted by statistical agencies in the developing world, some of
which are based on Nesstar.

3.2.4 DDI-Lifecycle

DDI-Lifecycle [94] is the result of a more demanding set of requirements
emerging from the use of DDI-Codebook. It is again a complex metadata
structure expressed using XML, but it is designed for different purposes. DDI-
Lifecycle is capable of describing not only the results of data collection, but
describing the metadata throughout the data collection process, from the ini-
tial conceptualization to the archiving of the resulting data. It can describe
several versions of the data and metadata as they change across the data
lifecycle. DDI-Lifecycle can describe several waves of data collection. It is
very useful when dealing with serial data collection as is often seen in data
production within statistical offices and long-standing research projects.

Any metadata which can be expressed using DDI-Codebook can also be
described using DDI-Lifecycle which includes after-the-fact data description
for single studies, as a necessary part of its broader scope. DDI-Lifecycle has
- because of the purpose it was designed to serve - a more complex structure
than DDI-Codebook.

DDI-Lifecycle can also be used to document specific sets of metadata out-
side of the description of a single study or set of studies. For example, areas of
commonly shared metadata such as concepts, statistical classification, or geo-
graphic structures can be described and referenced by any number of studies.

23 www.nesstar.com

www.nesstar.com
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Processing activities can be described and used to support a metadata-driven
approach to the collection, processing, and publication of data.

3.2.5 DDI-Lifecycle MD

In the same way that experiences with DDI-Codebook have led to a
broader set of requirements fulfilled by DDI-Lifecycle, implementations of
the DDI-RDF vocabulary and DDI-Lifecycle have provided new requirements
which will be met by DDI-Lifecycle MD (Model-Driven) [96].

DDI-Lifecycle MD will be very different from other DDI products, because
it will be based on an information model of the metadata content. This model
will be available for implementation in standard RDFS/OWL vocabularies
and standard XML Schema structures, which will be equivalent. This form of
model-based standard is a best practice in the world of standardization, and
several other standards in other domains have been using this approach for
many years.

DDI-Lifecycle MD will be another type of DDI work product: like DDI-
Codebook and DDI-Lifecycle, it will be a standard structure for metadata
related to the lifecycle of data in all stages, and thus will encompass much
of what is available in those XML standards today. It will also include the
functionality of DDI-RDF, since DDI-RDF is based on the structures of DDI-
Codebook and DDI-Lifecycle. All items of DDI-RDF will have a mapping
to elements in DDI-Lifecycle which in turn will be mapped to data model
components in DDI-Lifecycle MD. In addition, DDI-Lifecycle MD allows to
describe different types of data collection like surveys and register data and
enables a broader coverage in terms of methodology and processes.

As the DDI Alliance anticipates that there may be many different im-
plementation technologies using DDI as a basis, having an explicit model
expressed using UML 2, will be of benefit. To provide an example, the SDMX
standard is model-based and has standard implementations in XML Schemas,
JSON [107], and EDIFACT. Additionally, the model was used as the basis for
QB. Thus, moving DDI to a model-based orientation is a way of protecting the
standard against technological change, and a way of guaranteeing alignment
across different technology implementations.

The model-driven further development of the DDI standard enables to
break the model down to diverse concrete serializations such as RDFS/OWL,
XML Schema, relational database schemas, and Java libraries which can
be used to develop own software applications [26]. These bindings may be
adapted according to individual needs. In order to generate these bindings
automatically, we transform for each binding the platform-independent model
into a platform-specific model. Both types of models are physically stored in
the standard data exchange format XML Metadata Interchange (XMI) [249]
and validations rules are generated automatically out of individual platform-
specific models in form of OWL axioms.
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The development of the conceptual models of DDI-Codebook and DDI-
Lifecycle was XML Schema centric. The further development of the DDI stan-
dard, however, is model-driven, as the XML Schema centric development of
standards’ specifications is associated with many drawbacks. A model is better
maintainable and sustainable than XML Schemas as there are less side effects
when changing the model. It is hard to maintain consistency between diverse
XML Schemas which is much easier to ensure within a model. The model can
also be shown to non-technical persons in form of UML class diagrams and
further textual descriptions to adequately describe concepts and relationships
among them.

DDI-Lifecycle MD supports the use of subsets of the whole model for a
variety of purposes. These subsets are called functional views, are aligned with
specific use cases, and therefore enable the use of DDI for different audiences,
hides complexity of the whole model, and supports interoperability. In the
end, the goal is that DDI-Lifecycle MD can present DDI to users in chunks,
so users can learn and own just the parts of DDI that they need. The concept
behind these functional views is based on views needed to manage the inherent
complexity of large, software-intensive systems. It is commonly agreed that an
architectural description consists of multiple views. Each view describes the
architecture from the perspective of particular stakeholder concerns. The us-
age of views in architectural specification, analysis, and evolution is delineated
by [57, 83, 146–150]. For each functional view and based on the model and
additional rules, constraints will be generated to validate instance documents
against them.

DDI-Lifecycle MD aligns DDI with the Generic Statistical Information
Model (GSIM) [199], a reference model describing statistical information ob-
jects and processes. GSIM provides a common terminology across and between
statistical organizations to maintain consistency and allows statistical organi-
zations to understand and map common statistical information and processes
[198]. As there are clear synergies between DDI, SDMX, and GSIM [307], DDI-
Lifecycle MD serves as implementation layer for GSIM. Thereby, we build on
experiences made by [174, 208, 214, 276] when implementing GSIM in their
statistical organizations.

3.3 Representing Metadata on Research Data as Linked
Data

The DDI-RDF Discovery Vocabulary (DDI-RDF)24 [42] is intended to provide
means to describe SBE sciences research data by essential metadata to sup-
port the discovery of unit-record data sets and related metadata using RDF
technologies in the Web of Linked Data, which is the reason why disco is set
as the namespace prefix for the vocabulary.

24 http://www.ddialliance.org/Specification/RDF/Discovery

http://www.ddialliance.org/Specification/RDF/Discovery
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Many archives and other organizations have large amounts of research
data, sometimes publicly available, but often confidential in nature, requiring
applications for access. Such organizations use the proven and highly detailed
DDI standard for describing data sets of this type. When we consider how
such a standard could be used as a basis for an RDF vocabulary, we realize
that the requirements are very different. The most obvious use case is that of
discovery, given that much of the data is highly confidential, and that access
to the data must be applied for in most cases. The challenges of searching
the Web of Linked Data are enormous – the sheer range of information is
incredibly broad. Thus, the almost twelve hundred of metadata fields within
DDI is itself a problem. The DDI model must be significantly reduced in
complexity to be meaningful to cover these requirements. The fact that DDI
is not specific to any particular research domain or type of research data is a
positive feature, however, as the range of data to be exposed into the Web of
Linked Data is also very broad.

We make use of the DDI standard to create a simplified version of this
model by choosing the DDI elements which are needed for the discovery pur-
pose. With the background of the broadness and complexity of DDI, DDI-RDF
focuses on a small subset of DDI. The selection relies on use cases which are
oriented on the discovery of data in the Linked Data context and possible
usage within the Web of Linked Data. DDI-RDF has emerged as a massive
simplification of the DDI standard, optimized for querying using Semantic
Web technologies such as SPARQL.

Part of this best practice is the reuse of existing vocabularies wherever pos-
sible, and the extension of existing vocabularies where needs are almost, but
not completely covered. Widely accepted and adopted vocabularies are reused
to a large extend, as there are features of the DDI which can be addressed
through other vocabularies, such as: (1) describing metadata for citation pur-
poses using Dublin Core, (2) describing aggregated data like multi-dimensional
tables using QB, and (3) delineating code lists, category schemes, mappings
between them, and concepts like topics using SKOS.

In designing this vocabulary, every attempt has been made to meet the
requirements of the different technologies and needs found in the Linked Data
world [144], as opposed to the world of data archives, research institutes, data
libraries, and government statisticians [168]. We look at the motivations of
individuals from two different communities separately, because while they are
complementary, they are very different.

Motivation for Data Professionals and the DDI Community

For data professionals, the use of the data they produce or disseminate is
often a primary goal. For those working in data archives and data libraries,
the service they offer is access to research data for secondary use, and an
increase in the use of their data is perceived as a positive sign.
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For government statisticians, it is the same – they produce the “official”
data to support policy, and they perceive the use of their data as a contribu-
tion to society, and a fulfillment of their mission. [128] provides a description of
how the collaboration between open government initiatives, the Linked Data
community, and experts in the field of statistics and research data could enor-
mously improve the usability of quantitative government data on the Web.
DDI-RDF provides a useful model for describing some of the data sets now
being published by open government initiatives, by providing a rich meta-
data structure for them. While the data sets may be available (typically as
CSV files), the metadata which accompanies them is not necessarily coher-
ent, making the discovery of these data sets difficult. This vocabulary helps
to overcome this difficulty by allowing for the creation of standard queries to
programmatically identify data sets, whether made available by governments
or held within data archives.

For researchers, the reuse of the data they collect is something which en-
hances their reputation and career, through an emerging system of data cita-
tion which is very similar to the traditional citation of research papers. Thus,
the various members of the DDI community are very interested in having their
data be discovered and used.

This is somewhat problematic, however – it is not enough simply to pub-
lish data to the Web, which is very often illegal for reasons of privacy and
confidentiality. Instead, a researcher looking for unit-record data is often re-
quired to apply for access, and to make commitments about how the data will
be used and released. These issues are taken very seriously by data profes-
sionals for a variety of reasons: first, if people asked to fill out a survey do not
trust the person administering the survey, they will refuse to respond, making
the collection of good raw data with surveys difficult or impossible. Thus,
researchers want to be trusted by the people they study. Additionally, the
release of confidential information is illegal and potentially very destructive,
and can result in prosecution.

The degree of “statistical literacy” among users is always a major concern
with those who work at data libraries and archives, supporting researchers.
When using raw data and unit-record data, there is a significant set of skills
which is required to produce valid research. These skills require access to the
best possible metadata about the data. This is especially true when working
with data coming from different sources, something which researchers are often
very keen to do.

Thus, the DDI community is torn in two directions: on the one hand, they
very much want people to use their data, and hence are very interested in ad-
vertising their data through the Web of Linked Data; on the other hand – and
especially after seeing the metadata-free nature of many data sets published
at open data sites such as data.gov in the US – they are concerned at the
lack of standard, highly-detailed metadata which is required for the correct
analysis and use of unit-record data.

data.gov
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Ultimately, the DDI-based RDF vocabulary is done as a way of making
sure that when unit-record (or raw) data is published in the Web of Linked
Data, this will be done in a way which allows for correct and responsible use
of that data. The basic idea here is to reap the benefits of broader use of
existing data resources, while benefitting from the knowledge and experience
of working with data which is the hallmark of the DDI community and its
members.

Motivation for the Linked Data Community

From the perspective of the Linked Data community, the benefit is a simple
one – to put all of the data holdings of data archives and statistical orga-
nizations into the Web of Linked Data. DDI-RDF encourages the holders of
the data to be confident that sufficient metadata is being published to permit
discovery and use of the data.

The benefits for the Linked Data community lie at hand, as there was no
such vocabulary available with a comparable level of detail for representing
complex entities and relations regarding the complete lifecycle of research data
as DDI-RDF provides. The publication of research data in the Web of Data
became popular and important in various domains beside the SBE sciences,
so that a valuable contribution can be seen in the introduction of DDI-RDF.

RDF-based tools are able to take advantage of this publication, without
requiring the use of the complicated XML schemas which most DDI imple-
mentations require. Additionally, data sets described using this vocabulary
can be easily linked with other data sets, and can be more easily connected to
related web-based descriptions, making the data and the results of research
more closely connected. Further, the possibility exists of making explicit the
metadata around published, but under-documented data sets from open gov-
ernment initiatives, in a standard and understood form, by organizations other
than those which published the data sets themselves.

3.3.1 Overview of the Conceptual Model

Figure 3.4 gives an overview of the conceptual model of DDI-RDF - more
detailed descriptions of all classes and properties as well as various examples
are given in the DDI-RDF specification [42].

Identification and Relations to DDI-XML

In DDI, a lot of entities hold particular identifiers such as for different DDI
versions of DDI-Codebook or DDI-Lifecycle, but also persistent identifiers for
persons or organizations that are encoded in a particular identifier scheme
like ORCID25 or FundRef.26 In general, such identifiers can be added to each

25 http://orcid.org
26 http://www.crossref.org/fundref
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Fig. 3.4. Overview of the Conceptual Model

entitiy in DDI-RDF, since every entity is defined to be an rdfs:Resource.
General metadata elements which can be used on every resource include
skos:prefLabel to indicate the preferred label of this element. Each resource
must have (adms:identifier) one or multiple identifiers (adms:Identifier). Re-
sources of the class adms:Identifier can include the actual identifier itself as
well as information about the identifier scheme, version, and agency.

Since DDI-RDF only covers a small subset of the DDI-XML specifica-
tions DDI-Codebook and DDI-Lifecycle, it is worthwhile to have a relation-
ship to original DDI-XML files. Unique identifiers for specific DDI versions
are used for easing the linkage between DDI-RDF metadata and the original
DDI-XML files. Every DDI-RDF resource can be related (disco:ddifile) to a
foaf:Document representing a DDI-XML file containing further descriptions.

Versioning, Access Rights, and Licensing

Any resource can have versioning information (owl:versionInfo). The most
typical cases, however, are the versioning of (1) the whole metadata, i.e., the
RDF file, (2) studies, as a study goes through the life cycle from conception
through data collection, and (3) data files. Data sets (disco:LogicalDataSet)
may have access rights statements (dcterms:accessRights) and licensing infor-
mation (dcterms:license) attached to it (see Figure 3.5).
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Fig. 3.5. Access Rights Statements and Licensing Information

Coverage

Studies, series, data sets, and data files may have a spatial (dcterms:spatial
pointing to dcterms:Location), temporal (dcterms:temporal), and topical (dc-
terms:subject) coverage (see Figure 3.6 for the coverage of studies and series).

Fig. 3.6. Coverage

For stating temporal coverages, dcterms:temporal is used pointing to dc-
terms:PeriodOfTime. For time periods, labels can be attached (skos:prefLabel)
and start (disco:startDate) and end dates (disco:endDate) can be defined. Top-
ical coverages can be expressed using dcterms:subject. DDI-RDF foresees the
use of skos:Concept for the description of topical coverages.
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Studies and Series

To understand DDI-RDF, there are a few central classes, which can serve
as entry points. The first of these is disco:Study representing the process by
which a data set was generated or collected. A simple study supports the
stages of the full data lifecycle in a modular manner. In some cases, where
data collection is cyclic or on-going, data sets may be released as a series
(disco:StudyGroup), where each cycle or wave of the data collection activity
produces one or more data sets. This is typical for longitudinal studies, panel
studies, and other types of series. In this case, a number of disco:Study objects
would be collected (disco:inGroup) into a single disco:StudyGroup.

Fig. 3.7. Studies and Series

Data properties for studies and series (see Figure 3.7) include informa-
tion about funding, organizational affiliation, creator, contributor, publisher,
abstract, title, purpose, and information about the date and the time since
when the study/series is publicly available. The property disco:kindOfData
describes, with a string or a term from a controlled vocabulary, the kind of
data documented in the data sets of a study. Examples include survey, census,
administrative, measurement, assessment, demographic, and voting data.
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Data is collected about a specific phenomenon, typically involving some
target population of a defined class of people, objects, or events (disco:Universe),
and focusing on the analysis of a particular type of subject (disco:AnalysisUnit).
If, for example, the adult population of Finland is being studied, the analysis
unit would be individuals or persons.

Logical Data Sets and Data Files

Data sets have two representations: (1) a logical representation which de-
scribes the contents of the data set and (2) a physical representation which is
a distributed file holding that data. A disco:LogicalDataSet (see Figure 3.8),
an extension of dcat:Dataset, describes the content of the file, i.e., its organi-
zation into a set of variables.

Fig. 3.8. Logical Data Sets

For logical data sets, one can state a title (dcterms:title) and a flag in-
dicating if the unit-record data set is publicly available (disco:isPublic). The
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data property disco:variableQuantity on data files and logical data sets is use-
ful to have (1) when no variable level information is available or (2) when
only a stub of the RDF is requested, e.g., when returning basic information
on a study we do not need to return information on potentially hundreds or
thousands of variables.

Physical, distributed files containing unit-record data sets are represented
by disco:DataFile (see Figure 3.9), an extension of dcat:Distribution and dc-
terms:Dataset. It is possible to format (dcterms:format) data files in many
different ways, even if the logical content is the same. Data files can be de-
scribed (dcterms:description) and case quantities (disco:caseQuantity), ver-
sions (owl:versionInfo), and provenance information (dcterms:provenance)
can be stated.

Fig. 3.9. Data Files

Descriptive Statistics and Relations to Aggregated Data

An overview of the unit-record data can be given either by descriptive statis-
tics or aggregated data. disco:DescriptiveStatistics may be minimum, maxi-
mum, mean values, and standard deviations of specific variables, or absolute
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and relative frequencies of particular codes. disco:SummaryStatistics pointing
to variables and disco:CategoryStatistics pointing to codes are both descriptive
statistics (see Figure 3.10). Available category statistics types are frequency,
percentage, and cumulative percentage. Available summary statistics types are
skos:Concepts and organized in a controlled vocabulary.

Fig. 3.10. Descriptive Statistics

A qb:DataSet represents aggregated data such as multi-dimensional ta-
bles. Aggregated data is derived from (disco:aggregation�) unit-record data
by statistics on groups, or aggregates such as counts, means, or frequencies.
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Variables

When it comes to understanding the contents of a data set, this is done us-
ing the disco:Variable class (see Figure 3.11). Variables (e.g., age or sex )
provide a definition of the column in a rectangular data file, and can asso-
ciate it with a theoretical concept (skos:Concept) to be investigated (e.g.,
education) and a disco:Question (e.g., ’How old are you?’) - the ques-
tion in a disco:Questionnaire which was used to collect the data. We use
skos:narrower and skos:broader to build hierarchies of theoretical concepts
within a skos:ConceptScheme of a particular study or series.

Fig. 3.11. Variables and Represented Variables

A variable is a characteristic of a unit being observed and might be the
answer of a question, have an administrative source, or be derived from other
variables (e.g., age group derived from age). Variables can be further de-
scribed (dcterms:description), skos:notation is used to associate names with
variables and labels can be assigned to variables via skos:prefLabel. Variables
may be based on represented variables (disco:RepresentedVariable) encom-
passing study-independent, re-usable parts of variables like the classification
of occupations.

Representations

Variables, represented variables, and questions may have representations (see
Figure 3.12). A disco:Representation may be an ordered or unordered code
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list, i.e., a set of codes (e.g., 0, 1, 2, ...) and categories (human-readable labels
of codes), or a set of values of possibly multiple datatypes. The variable age,
e.g., may be represented by values of the datatype xsd:nonNegativeInteger or
by an ordered code list of individual ages or age clusters (e.g., ’0 to 10’ and
’11 to 20’).

Fig. 3.12. Representations of Variables, Represented Variables, and Questions

Codes and categories themselves are represented using skos:Concept and
organized in skos:ConceptSchemes in case of an unordered code list (see Figure
3.13). A skos:OrderedCollection organizes codes in a particular order within a
skos:memberList. Theoretical concepts can be described using skos:definition,
codes by skos:notation, and categories by skos:prefLabel.

Data Collection

The data collection produces the data sets of a study. In some cases, where
data collection is cyclic or on-going, data sets may be released as a series,
where each cycle or wave of the data collection activity produces one or more
data sets. The data for the study is collected by an instrument (see Figure
3.14), i.e., a questionnaire, an interview, or another entity used as a means of
data collection.

The purpose of an instrument is, in the case of a study, to record the flow of
a questionnaire and its use of questions. A question is designed to get informa-
tion from a respondent upon a subject or a sequence of subjects. Instruments
can be described, may be associated with human-readable labels, and may
have external documentations. A question has a question text (e.g., ’How old
are you?’), a label (e.g., age), and a response domain, the representation of
the question (e.g., the datatype xsd:nonNegativeInteger).

3.3.2 Reuse of and Relations to other Vocabularies

Widely accepted and adopted vocabularies are reused within the conceptual
model of DDI-RDF to a large extend. There are features of DDI which can
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Fig. 3.13. Organization of Code Lists

Fig. 3.14. Data Collection
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be addressed through other vocabularies, such as detailed provenance infor-
mation on research data and its metadata (PROV-O), catalogs of data sets
(DCAT ), aggregated data (QB), formal statistical classifications (XKOS ),
code and category lists, theoretical concepts, and concepts like topics (SKOS ),
persistent identifiers (ADMS ), and arbitrary objects, processes, and their at-
tributes (SIO). Furthermore, we reuse the Vocabulary of Interlinked Datasets
(VoID) [2, 90] for expressing general metadata about data sets, Friend of a
Friend (FOAF) [62] to describe person-level data, the Organization Ontology
(ORG) [269] to model organization related information, and the DCMI Meta-
data Terms [103] to describe general metadata of DDI-RDF constructs for
citation purposes.

The PROV Ontology (PROV-O) [122, 203, 226] is used to represent de-
tailed provenance information of research data and its metadata, to describe
information on ownerships, and to interchange provenance information gen-
erated in different systems and under different contexts. Terms of PROV-
O are organized among three main classes: prov:Entity, prov:Activity and
prov:Agent. While classes of DDI-RDF can be represented either as entities
or agents, particular processes for, e.g., creating, maintaining, and accessing
data sets can be modeled as activities.

Properties like prov:wasGeneratedBy, prov:hadPrimarySource, prov:wasIn
validatedBy, or prov:wasDerivedFrom describe the relationship between classes
for the generation of data in more detail. In order to link from a disco:Study
to its original DDI-XML file, the property prov:wasDerivedFrom can be used.
PROV-O allows for representing versioning information by using the terms
prov:Revision, prov:hadGeneration, and prov:hadUsage. PROV-O can also be
used to model information and relationships that are relevant for determining
accuracy, quality, and comparability of a data set with others. By utilizing
the properties prov:qualifiedInfluence or prov:wasInformedBy, qualified state-
ments can be made about a relationship between entities and activities, e.g.,
that and how a particular method influenced a particular data collection or
data preparation process.

Combining terms from DCAT and DDI-RDF can be useful for a number
of reasons:

• Describing collections or catalogs of research data sets using DCAT
• Providing additional information about physical aspects of research data

files (e.g., file size and file formats) using DCAT
• Offering information about the data collection that produced the data

sets in a data catalog using DDI-RDF
• Providing information about the logical structure (e.g., variables and the-

oretical concepts) of tabular data sets in a data catalog using DDI-RDF

DCAT is better suited to describe collections and catalogues of data
sets. DDI-RDF, on the other side, supports richer descriptions of groups
of data sets or individual data sets. We map to DCAT in two places: the
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disco:LogicalDataSet is an extension of the dcat:Dataset and physical, dis-
tributed data files are represented by disco:DataFile which is itself an exten-
sion of dcat:Distribution.

We reuse SKOS to a large extent to represent theoretical concepts and their
hierarchies, unordered and ordered code lists, formats of data files, the kind of
data documented in the data sets of a particular study, and coverages. Spatial,
temporal, and topical coverages are directly attached to studies, logical data
sets, and data files.

Especially persons and organizations may hold one or more persistent iden-
tifiers of particular schemes and agencies (e.g., ORCID27 or FundRef28) that
are not considered by the specific identifiers of DDI. To include those identi-
fiers and for distinguishing between multiple identifiers for the same resource,
we use the Asset Description Metadata Schema (ADMS) [9]. As a profile of
DCAT, ADMS aims to describe semantic assets, i.e., reusable metadata and
reference data. Individuals of the class adms:Identifier can be added to any
rdfs:Resource by the property adms:identifier (see Figure 3.15). That identi-
fier can contain properties that define the particular identifier itself, but also
its scheme, version, and managing agency. Although utilized primarily for de-
scribing identifiers of persons and organizations, it is allowed to attach an
adms:Identifier to instances of all classes in DDI-RDF.

Fig. 3.15. Identification

The Semanticscience Integrated Ontology (SIO) [14, 106] is a simple on-
tology to describe arbitrary (i.e., real, hypothesized, virtual, and fictional) ob-
jects, processes, and their attributes. A sio:SIO 000367 (variable) represents
a value that may change within the scope of a given operation or set of opera-
tions. For instance, in the context of mathematics or statistics, SIO variables
are information content entities that can be used to indicate the independent,
dependent, or control variables of a study or experiment. The similarity be-

27 http://orcid.org
28 http://www.crossref.org/fundref
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tween a SIO variable and a disco:Variable is that they may be associated with
a theoretical concept like sex, age, or citizenship. We see disco:Variable as
being equivalent to the SIO variable class.

Fig. 3.16. Reuse of DCMI Metadata Terms, FOAF, and ORG

The DCMI Metadata Terms are used to describe general metadata of
DDI-RDF constructs such as a study abstract (dcterms:abstract), a study
or data set title (dcterms:title), a human readable description of DDI-RDF
resources (dcterms:description), provenance information for a data file (dc-
terms:provenance), and the date (or date range) at which a study will be-
come available (dcterms:available). Creators (dcterms:creator), contributors
(dcterms:contributor), and publishers (dcterms:publisher) of studies and se-
ries are foaf:Agents which are either foaf:Persons or org:Organizations whose
members are foaf:Persons. Studies and series may be funded by (disco:fundedBy)
foaf:Agents, whereby disco:fundedBy is defined to be a sub-property of dc-
terms:contributor (see Figure 3.16).
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3.3.3 Use Cases

In this section, we introduce several representative real world use cases that
show (1) the usage of the DDI-RDF vocabulary, (2) its importance for data
professionals, the SBE sciences, and the Linked Data community, and (3) the
interaction between DDI-RDF and other vocabularies. Just like the use cases
delineated by [50, 53, 193, 318], these use cases have in common that they
represent real information needs of researchers. The DDI-RDF specification
[42] contains additional example data which can be consulted to get details
of how to construct DDI-RDF instance data and to get a feeling of the full
potential of DDI-RDF to represent metadata on statistical data.

UC1: Enhancing the discovery of data by providing related metadata. Many
archives and government organizations have large amounts of data, sometimes
publicly available, but often confidential in nature, requiring applications for
access. While the data sets may be available (typically as CSV files), the
metadata which accompanies them is not necessarily coherent, making the
discovery of these data sets difficult. A user has to read related documents
to determine if the data is useful for the intended research purposes. The
data provider could enhance the discovery of data by providing key meta-
data in a standardized form which would allow to create standard queries to
programmatically identify needed data sets [40].

UC2: Searching for studies by free text search in study descriptions. The
most natural way of searching for data is to formulate the information need by
using free text terms and to match them against the most common metadata,
like title, description, abstract, or unit of analysis. A researcher might search
for relevant studies which have a particular title or keywords assigned to in
order to further explore the data sets attached to them. The definition of an
analysis unit might help to directly determine which data sets the researcher
wants to download afterwards. A typical query could be ’find all studies with
questions about commuting to work’ [40, 318].

UC3: Searching for studies by publishing agency. Researchers are often
aware of the organizations which disseminate the kind of data they want to
use. This scenario shows how a researcher might wish to see the studies which
are disseminated by a particular organization, so that the data sets which
comprise them can be further explored and accessed. ’Show me all the studies
for the period 2000 to 2010 which are disseminated by the UK Data Archive’
is an example of a typical query [40, 318].

UC4: Searching for studies by coverage. Researchers often want to know
which studies exist for a specific country (spatial coverage, e.g., France), time
period (temporal coverage, e.g., 2005), and subject (topical coverage, e.g.,
election). The coverage in this example is separated by the three dimensions:
country, time, and subject [41, 318].

UC5: Linking publications to related data sets. Publications, which de-
scribe ongoing research or its output based on research data, are typically
held in bibliographical databases or information systems. By adding unique
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and persistent identifiers to DDI-based metadata for data sets, these data
sets become citable in research publications and thereby linkable and discov-
erable for users. On the other side, the extension of research data with links to
relevant publications is also possible by adding citations and links. Such pub-
lications can directly describe study results in general or further information
about specific details of a study, e.g., publications of methods or the design of
the study or about theories behind the study [40, 41, 50]. [175] discuss another
approach to link publications to data.

UC6: Searching for data sets by accessibility. This scenario describes how
to retrieve data sets which fulfill particular access conditions. Many research
data sets are not freely available, and access conditions may restrict some
users from accessing some data sets. It is expected that the researcher looking
for data might wish to see the data sets which are either publicly available or
which meet specific access conditions or license terms. Access conditions vary
by country and institution. Users may be familiar with the specific licenses
which apply in their own context [40, 318].

UC7: Links to external thesauri. Theoretical concepts can be connected
with questions, variables, or descriptive statistics to provide information about
their topic. Such concepts are typically organized in concept schemes which are
often similar to traditional thesauri or classification systems regarding their
structure and content. When assigning concepts, either an existing concept
scheme has to be used or a new one has to be defined. A precise annotation
of such concepts is relevant for users when searching for studies, which, e.g.,
cover specific concepts or contain questions regarding a specific theme.

In a lot of cases, however, the user does not know which terms or clas-
sification systems have been used to provide these concepts. In such cases,
mappings from concepts to terms of established thesauri or dictionaries like
EuroVoc,29 WordNet,30 or LCSH31 and more domain-specific thesauri such as
the STW Thesaurus for Economics32 or the Thesaurus for the Social Sciences
(TheSoz)33 can be helpful to recommend users suitable terms for search which
are used in a study as concepts.

Such mappings between thesauri are a typical instrument for information
retrieval. Therefore, it is quite reasonable to connect concepts to terms of
existing knowledge systems to (1) describe these concepts and (2) provide in-
formation retrieval related services for users like search term recommendation
during search. The inclusion of thesauri, which often provide an established
and mature term corpora in their specific discipline, does not only disseminate
the use of such vocabularies, but also the potential reuse of the concepts in
other Linked Data applications [41, 50].

29 http://eurovoc.europa.eu
30 https://wordnet.princeton.edu
31 http://id.loc.gov/authorities/subjects.html
32 http://zbw.eu/stw/version/latest/about.en.html
33 http://www.gesis.org/en/services/research/thesauri-und-klassifikationen/

social-science-thesaurus

http://eurovoc.europa.eu
https://wordnet.princeton.edu
http://id.loc.gov/authorities/subjects.html
http://zbw.eu/stw/version/latest/about.en.html
http://www.gesis.org/en/services/research/thesauri-und-klassifikationen/social-science-thesaurus
http://www.gesis.org/en/services/research/thesauri-und-klassifikationen/social-science-thesaurus
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UC8: Searching for studies and data sets by persons and organizations.
Researchers may search for studies and data sets by producer, creator, or
contributor [56, 318]. A typical scenario within the SBE sciences could be: A
researcher aggregates unit-record data sets of the European study EU-SILC34

and acted on behalf of the research institute GESIS35 which funded the study.
Representative queries could be: (1) Which persons, working for the research
institute GESIS, created the German General Social Survey (ALLBUS),36 a
particular group of studies in Germany? (2) Which organizations and per-
sons contributed to the creation of the European study EU-SILC? (3) Which
persistent identifiers are assigned to persons and organizations publishing the
European study EU-LFS?37

UC9: Searching for data sets by statistical classification. Researchers may
be interested in data sets having a specific statistical classification like ISCO
[56]. One question typically asked by SBE researchers could be to query on the
semantic relationships which are defined for concepts within statistical classi-
fications using XKOS properties. By means of these properties not only hier-
archical relations can be queried but also part of relationships (xkos:hasPart),
more general (xkos:generalizes) and more specific (xkos:specializes) concepts,
and positions of concepts in lists (xkos:previous, xkos:next).

UC10: Searching for data in data collections. While DDI-RDF and QB
provide terms to describe unit-record (disco:LogicalDataSet) and aggregated
data sets (qb:DataSet), DCAT enables to describe these data sets inside of data
collections like repositories, catalogs, or archives. The relationship between
data collections (dcat:Catalog) and their contained data sets (dcat:Dataset) is
useful, since such collections are a typical entry point when searching for data
(see Figure 3.17).

A search for data may consist of two phases. In a first phase, the user
searches for different records (dcat:CatalogRecord) inside a data catalog. This
search can differ according to the users’ information needs. While it is possi-
ble to search for metadata provided inside such a record (e.g., dcterms:title,
dcterms:description), the user may also search for more detailed information
about the data set or its distribution (dcta:Distribution, disco:DataFile). A
user may want to search for data sets of a particular topical (dcterms:subject,
dcat:theme, dcat:keyword), temporal (dcterms:temporal), and spatial (dc-
terms:spatial) coverage, or for certain formats (dcterms:format) in which a
distribution of the data is available. Data sets of data catalogs are described
by themes they cover. Since these themes are organized in a taxonomy, they
can be used for an overall search in all data sets of a data catalog. As the
search of the first phase may result in multiple hits of data sets, another more
sophisticated search has to be executed in a second phase to find out which

34 http://www.gesis.org/en/missy/metadata/EU-SILC
35 http://www.gesis.org
36 http://www.gesis.org/en/allbus
37 http://www.gesis.org/en/missy/metadata/EU-LFS

http://www.gesis.org/en/missy/metadata/EU-SILC
http://www.gesis.org
http://www.gesis.org/en/allbus
http://www.gesis.org/en/missy/metadata/EU-LFS
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Fig. 3.17. Searching for Data in Data Collections
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data sets are relevant for the user. In case the user finds aggregated data
sets published in QB, the property prov:wasDerivedFrom may hold a link to
discover the original unit-record data sets represented in DDI-RDF [56, 318].

3.3.4 Implementations

We implemented a direct mapping between DDI-RDF and DDI-XML (DDI-
Codebook and DDI-Lifecycle) using XSLT stylesheets,38 which can be used
as a reference implementation showing how elements in DDI-Codebook and
DDI-Lifecycle are mapped to DDI-RDF and back.

The structure of DDI-Codebook differs substantially from DDI- Lifecycle.
DDI-Codebook is designed to describe metadata for archival purposes and
its structure is very predictable and focused on describing variables with the
option to add annotations for question texts. DDI-Lifecycle, on the other hand,
is designed to capture metadata from the early stages in the research process.
DDI-Lifecycle enables capturing and reuse of metadata through referencing:
a lot of the metadata can be described in modules and references are used to
a large extend, e.g., between questions and variables. DDI-Lifecycle has more
elements and is able to describe studies in greater detail than DDI-Codebook.

The DDI-RDF vocabulary is developed with this in mind - discovery should
be the same regardless of which DDI-XML specification was used to document
a study. The core metadata for the discovery purpose is available in DDI-
Codebook and DDI-Lifecycle, which is the reason why the transformation is
automated and standardized for both. This means that regardless of the input
the resulting RDF is the same which (1) enables an easy and equal search in
RDF resulting from DDI-Codebook and DDI-Lifecycle and (2) increases the
interoperability between both.

The goal of making this implementation is to provide a simple way to start
publishing DDI-XML as RDF. XSLT is also easy to customize and extend,
so users can take the base and add output to other vocabularies if they have
specialized requirements. It can also be adjusted if special requirements to
the input are given. Keeping the XSLT as general as possible, we provide the
basis for a broad reusability of the conversion process.

The mappings, including XPath expressions and links to relevant docu-
mentation for DDI-Codebook and DDI-Lifecycle, are themselves represented
in RDF (see Figure 3.18) in order to be able to execute SPARQL queries
on them. Bidirectional mappings of terms from other vocabularies, which are
reused multiple times in DDI-RDF, need a context to guarantee unambiguous
mapping paths: skos:notation, e.g., is used to represent variable labels and
numeric codes of variable code lists. Context information can either be stated
in form of a SPARQL query or an informal textual description.

The Microdata Information System (MISSY) [28–31, 170] is an online ser-
vice platform that provides systematically structured metadata for official

38 Online available at: https://github.com/linked-statistics/DDI-RDF-tools

https://github.com/linked-statistics/DDI-RDF-tools
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Fig. 3.18. Bidirectional Mappings between DDI-RDF and DDI-XML

statistics including data documentation at the study and variable level39 as
well as documentation materials, tools, and further information. We devel-
oped (1) an editor40 in compliance with DDI-Codebook, DDI-Lifecycle, and
DDI-RDF to improve and simplify the process of documentation and (2) a
web information system41 to provide the end user with various views on the
metadata [324].

We use DDI-RDF as core data model and extend it as DDI-RDF does
not meet all project requirements. We provide open-source reference imple-
mentations of the DDI-RDF and the project-specific data model in Java.42

As instances of these data models may be physically stored in multiple for-
mats such as DDI-XML, DDI-RDF, relational databases, and Java, we offer
implementations for each persistence strategy according to individual persis-
tence APIs. Diverse export routines (e.g., DDI-RDF and DDI-Lifecycle) are
available enabling the reuse of metadata in other systems.

3.4 Conclusion

As there are different types of research data and related metadata, we give
an overview and explain which vocabularies are commonly used to represent
them in RDF. We (1) define each of these types as stated by data professionals,
(2) delineate their transition in the research data lifecycle, and (3) depict how
metadata on each type of research data is represented using XML standards
before respective vocabularies have been developed.

Because of the lack of vocabularies, just a few types of research data and
related metadata can be expressed in RDF, which is the reason why we have
developed three missing vocabularies (1) to represent all types of research
data and its metadata in RDF and (2) to validate RDF data according to
constraints extractable from these vocabularies:

• The DDI-RDF Discovery Vocabulary (DDI-RDF) [42] supports the dis-
covery of metadata on unit-record data, the type of data most often used

39 6 series, 74 studies, 129 data sets, 31,834 variables, and 7,922 questions
40 http://www.gesis.org/missy/editor
41 http://www.gesis.org/missy
42 DDI-RDF reference implementation: https://github.com/missy-project

http://www.gesis.org/missy/editor
http://www.gesis.org/missy
https://github.com/missy-project
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in research within the SBE sciences, i.e., data collected about individuals,
businesses, and households. It can be applied to research data from many
different domains, rather than being specific to a single set of domain
data. DDI-RDF is based on a metadata standard, composed of almost
twelve hundred metadata fields, known as the Data Documentation Ini-
tiative (DDI) [95], an XML format to disseminate, manage, and reuse
data collected and archived for research.

• Physical Data Description (PHDD) [321] is a vocabulary to describe data
in tabular format and its physical properties. The data could either be
represented in form of records with character-separated values (CSV) or
with fixed length.

• The SKOS Extension for Statistics (XKOS) [84] is a vocabulary to de-
scribe the structure and textual properties of formal statistical classifi-
cations as well as relations between classifications and concepts, and to
introduce refinements of SKOS semantic properties to allow the use of
more specific relations between concepts.

Acknowledgements

Linked Data community members and statistical domain experts, i.e., repre-
sentatives of national statistical institutes and national data archives as well
as core members of the DDI Alliance Technical Committee - 26 persons from
23 organizations and 12 countries - have developed three RDF vocabularies:
the DDI-RDF Discovery Vocabulary (DDI-RDF), Physical Data Description
(PHDD), and the SKOS Extension for Statistics (XKOS).

As members of the RDF Vocabularies Working Group, an international
working group hosted by the international standards organization DDI Al-
liance, we have taken key responsibilities when developing these vocabularies.
As editors of the DDI-RDF and PHDD specifications, we are in charge of (1)
creating the official HTML specifications and formal specifications in OWL,
(2) collecting and collaboratively solving open issues, (3) organizing the tech-
nical and the public review phases, and (4) the publication process itself.

The work on these three vocabularies has been started at the first Dagstuhl
Workshop on Semantic Statistics43 at Schloss Dagstuhl, Leibniz Center for
Informatics, in 2011, and has been continued at the follow-up Workshop on
Semantic Statistics44 in the course of the European DDI User Conference,
the second Dagstuhl Workshop on Semantic Statistics45 in 2012, and another
workshop in 2013. When taking an active part in these workshops, we have
been responsible to (1) adequately design the conceptual models for these
vocabularies in close cooperation with domain experts and in form of UML

43 http://www.dagstuhl.de/en/program/calendar/evhp/?semnr=11372
44 http://www.iza.org/conference files/EDDI2011/call for papers/EDDI11

Program 2011-11-21.pdf
45 http://www.dagstuhl.de/de/programm/kalender/evhp/?semnr=12422
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http://www.dagstuhl.de/de/programm/kalender/evhp/?semnr=12422


90 3 Vocabularies for Representing Research Data and its Metadata

class diagrams and additional textual descriptions, (2) take, reason, and doc-
ument design decisions on the model level, and (3) formalize the conceptual
models in RDFS/OWL in a semantically correct way. To present DDI-RDF
and PHDD to the general public, we held two tutorials at the 4th and the
6th European DDI User Conference46 and got another tutorial accepted to be
hold at the 10th International Conference on Semantic Computing.47

Chapter 3 is based on 13 publications (4 journal articles, 2 articles in
conference proceedings, 2 articles in workshop proceedings, 2 specifications,
and 3 technical reports). In [40], we provide a summary of all types of research
data and associated metadata and demonstrate the benefits having the DDI-
RDF vocabulary for the Linked Data community, data professionals, and the
SBE sciences. In [50, 53, 54, 318], we discuss use cases related to DDI-RDF. In
[41], we describe the conceptual model of DDI-RDF in a comprehensive way,
and in [56], we demonstrate which other vocabularies are reused within the
conceptual model of DDI-RDF as well as relationships to other vocabularies.
In [40, 41], we give an overview of DDI-XML, the underlying XML standard
of DDI-RDF, and in [52], we describe the relations between DDI-XML and
DDI-RDF and how to transform DDI-XML documents corresponding to DDI
XML Schemas into an RDF representation conforming to DDI-RDF.

At two Dagstuhl workshops,48 we have pushed the model-driven further
development of the DDI standard itself [26]. As members of the DDI Moving
Forward Project,49 an international working group of the DDI Alliance, we
work with the modeling team to technically formalize the conceptual model
of the DDI standard by means of UML 2. As the model-driven development
enables to break the model down to diverse concrete bindings such as RDF-
S/OWL, XML Schema, relational database schemas, and Java libraries, we
contribute to the definition and implementation of diverse model serializa-
tions, first and foremost RDFS and OWL.

We have published a journal article to present an overview of several rep-
resentative applications that use Semantic Web technologies and highlight
applications in the SBE sciences such as the Microdata Information System
(MISSY)50 whose data model is based on DDI-RDF [55]. Another journal arti-
cle serves to show how to enrich social science study descriptions with various
data sets from the LOD cloud, expose selected elements of study descriptions
in RDF by applying commonly used RDF vocabularies like DDI-RDF, and
link study descriptions to adequate entities of external data sets [277].

46 www.eddi-conferences.eu/ocs/index.php/eddi/eddi12/schedConf/program
www.eddi-conferences.eu/ocs/index.php/eddi/eddi14/schedConf/program

47 http://www.ieee-icsc.com
48 DDI Lifecycle: Moving Forward : http://www.dagstuhl.de/de/programm/

kalender/evhp/?semnr=12432; DDI Lifecycle: Moving Forward (Part 2):
http://www.dagstuhl.de/de/programm/kalender/evhp/?semnr=13442

49 https://ddi-alliance.atlassian.net/wiki/pages/viewpage.action?pageId=491703
50 http://www.gesis.org/missy
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https://ddi-alliance.atlassian.net/wiki/pages/viewpage.action?pageId=491703
http://www.gesis.org/missy


4

RDFication of XML Enabling to use RDF
Validation Technologies

XML is commonly used to (1) represent a large set of information, (2) ex-
change data in distributed environments, and (3) integrate data from various
sources and domains. In the last decade, the Extensible Markup Language
(XML) [60] has reached wide acceptance as the de facto standard for data
exchange as (1) XML is both human readable and machine interpretable, (2)
XML is simple to use, and (3) there is a clean separation between the concep-
tual level with XML Schemas and the instance level with XML documents.
An XML document may be an instance of an XML Schema (XSD) [304], the
primary, widely adopted, and mostly used language for (1) determining the
terminology of particular domains, (2) defining structural constraints on sets
of XML documents, and (3) validating XML documents on these constraints.

The Resource Description Framework (RDF) [89, 143] is the standard data
format of the Semantic Web. RDF data is published in the increasingly popu-
lar and widely adopted LOD cloud1 [278] to get linked with a huge number of
RDF data sets of different topical domains.2 As RDF is an established stan-
dard, there is a plethora of tools which can be used to interoperate with data
represented in RDF which may semantically conform to OWL ontologies.

The Web Ontology Language (OWL) [27] is an expressive language used to
formally specify the semantics of conceptual models about data and therefore
enables software to understand and properly process data according to the
intended semantics. OWL has become a popular standard for data represen-
tation, data exchange, and data integration of heterogeneous data sources.
In combination with the OWL-based Semantic Web Rule Language (SWRL)
[154], OWL provides facilities for developing very powerful reasoning services
enabling to derive implicit knowledge out of explicitly stated knowledge.

OWL ontologies and XSDs are both extensively used to describe concep-
tual models about data in various domains. There is already a huge amount of
XSDs describing conceptual models of many domains, but compared to XSDs

1 http://lod-cloud.net
2 http://linkeddata.org

http://lod-cloud.net
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there are only a few ontologies formally representing the intended semantics
of particular domains. This is the reason why the LOD cloud is still missing
conceptual descriptions [169]. In the B2B domain, e.g., there are hundreds of
XSDs to encode exchanged XML data, but not many ontologies.

As syntactic structures of XML documents may be quite complex, they
are not intended to be used for information retrieval tasks. Translating XML
into RDF, however, enables to formulate queries like Who is the author of the
book ’A Brief History of Time’? in a semantic way using intuitive terms of
respective domains such as Book and author, instead of formulating queries
syntactically on XML documents according to their syntactic structures using
rather complex and hard to understand XPath [270] or XQuery [271] expres-
sions.

Traditionally, domain experts work in close collaboration with ontology
engineers to design OWL domain ontologies from scratch by hand which re-
quires a lot of time and effort. In many cases, however, XSDs adequately
representing particular domains of interest have already been produced by
the XML community and all the information located in XSDs can therefore
be reused as a basis to develop more sophisticated domain ontologies. Time-
consuming work has already been done and domain experts do not have to
define the domain data model completely anew. Saved time and effort could be
used more effectively to enrich the knowledge representation of given domains
with additional domain-specific semantic information not or not satisfyingly
covered by already existing XSDs.

Data practitioners of many domains still represent their data in XML, but
expect to increase the quality of their data by using common RDF valida-
tion tools. In order to be able to directly validate XML against semantically
rich OWL axioms when using them in terms of constraints and extracting
them from XSDs adequately representing particular domains, we propose on
formal logics and the XSD meta-model based automatic transformations of
arbitrary XSDs and conforming XML documents into OWL ontologies and
corresponding RDF data. This does not cause any additional manual effort as
these constraints have already been defined by the XML community within
underlying XSDs.

Contribution 2-1 Direct validation of XML data using common RDF val-
idation tools against semantically rich OWL axioms extracted from XML
Schemas adequately representing particular domains

Semantically rich OWL axioms against which XML data can directly be
validated are (1) sub-class relationships, (2) OWL hasValue restrictions on
data properties, and (3) OWL universal restrictions on object properties. Such
universal restrictions could ensure that (1) particular XML elements like the
title of a book only contain plain text, (2) specific XML attributes such as
publication year only include positive numbers, or (3) an XML element like
book only contains listed XML elements (e.g., isbn, title, and author) in a
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predefined order. The subsequent excerpt of an XML document contains the
book A Game of Thrones which is valid in compliance with these constraints.
When validating the book The Sign of the Four, in contrast, constraint viola-
tions are raised since (1) the explicit order of the child elements of the element
book is not adhered, (2) the attribute year includes textual content, and (3)
the child element isbn is absent.

1 XML:
2 <library>
3 <book year="1996">
4 <isbn>0-553-10354-7</isbn>
5 <title>A Game of Thrones</title>
6 <author>
7 <name>George R. R. Martin</name>
8 </author>
9 </book>

10 <book year="February 1890">
11 <author>
12 <name>Arthur Conan Doyle</name>
13 </author>
14 <title>The Sign of the Four</title>
15 </book>
16 </library>

The subsequent automatically extracted universal restrictions3 can di-
rectly be used to validate RDF data conforming to generated ontologies and
therefore underlying XSDs to ensure that book title elements and book id
attributes can only have string literals as content (1+2) and that book ele-
ments only include the child elements title and author in exactly this order
determined by an XSD sequence inside an XSD complex type definition (3+4):

(1) Title � @ value . String
(2) ID � @ value . String
(3) Book-Sequence � @ contains . ( Title \ Author )
(4) Book-Sequence � @ sequence . ( Title \ Author )

According to the third universal restriction, book child element sequences
can only contain either title or author elements or both elements. To fully
reflect the intended meaning of the strict order of child elements, however, an
additional universal restriction is necessary. As RDF and therefore RDF-based
OWL is set-oriented, we introduce the object property sequence. Consequently,
the fourth universal restriction on the object property sequence is used to
formally specify the explicit strict order of book child elements.

After automatically performed transformations, we are able to validate the
resulting RDF data against OWL axioms extracted out of XSDs either (1)
explicitly according to XSD constructs determining the syntactic structure of
sets of XML document instances or (2) implicitly according to the implicit

3 OWL axioms are formally defined using Descriptions Logics; IRIs are abbrevi-
ated for the sake of simplicity; Classes representing XML elements (e.g., Title)
can be easily transformed into data properties (e.g., title) when deriving domain
ontologies in the second step of the proposed semi-automatic approach.
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semantics of XSD constructs like class memberships of XML elements or re-
lationships between XML elements. To formally define and to model explicit
and implicit semantics in a semantically correct way, we formally underpin
transformations themselves on semantically rich OWL axioms for which the
knowledge representation formalism Description Logics [12, 13, 196, 272] with
its well-studied theoretical properties provides the foundational basis.

Contribution 2-2 Transformations are formally based on semantically rich
OWL axioms

On the meta-model level, we map the XSD meta-model to OWL classes
and OWL universal restrictions on data and object properties. These classes,
data, and object properties are themselves part of an OWL ontology we have
developed to represent the XSD meta-model in OWL. On the schema level, we
translate XSDs into sub-classes of these classes, OWL hasValue restrictions
on these data properties, and OWL universal restrictions on these object
properties.

As structures of XSDs may be quite complex, we base these transforma-
tions on the XSD meta-model and map each construct of the XSD meta-model
to suitable constructs of an OWL TBox. Such meta-model based transforma-
tions enable to translate arbitrary complex structures of XSDs and therefore
ensure that any XSD can be converted using identical transformation rules.

Contribution 2-3 Any XML Schema can be converted to an OWL ontology
without any information loss

We achieve completeness when (1) mapping the XSD meta-model to OWL
on the meta-model level, (2) converting XSDs to OWL on the model level,
and (3) translating XML data on the instance level. Consequently, there is
no information loss during the transformation process of XSDs since all infor-
mation about the terminology of particular domains, the implicit semantics
of XSD constructs, and the syntactic structure of sets of XML documents
is maintained and modeled with correct semantics in form of suitable OWL
axioms.

A main difference between the structural level of XML and the semantic
level of RDF is that XML elements are explicitly ordered and RDF is set-
oriented. As XSDs are used to specify structural relationships of objects in
data-centric XML documents, we preserve all the structural information of
XSDs determining the syntactic structure of sets of XML documents.

Contribution 2-4 Complete extraction of XML Schemas’ structural infor-
mation

The XSD construct sequence, e.g., is used to specify the explicit order of
XML elements contained in parent XML elements and the XSD construct
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choice specifies an exclusive or of its operands. Publications, e.g., are either
identified by an ISBN and a title (for books) or by an ISSN and a title (for
periodical publications), but it should not be possible to assign both identifiers
to a given publication:

1 XML Schema (excerpt):
2 <xsd:element name="publication">
3 <xsd:complexType>
4 <xsd:sequence>
5 <xsd:choice>
6 <xsd:element name="isbn" type="xsd:string"/>
7 <xsd:element name="issn" type="xsd:string"/>
8 </xsd:choice>
9 <xsd:element name="title" type="xsd:string"/>

10 </xsd:sequence>
11 </xsd:complexType>
12 </xsd:element>
13

14 Invalid XML (excerpt):
15 <publication>
16 <issn>1744-263X</issn>
17 <isbn>1744-263X</isbn>
18 <title>International Journal of Metadata, Semantics and Ontologies</title>
19 </publication>

We adequately model the complete syntactic relationships of XSD compo-
nents and fully appreciate how components relate to other ones on all three
levels of instance, schema and meta-model.

Generated ontologies are not directly as useful as manually created domain
ontologies as they are not conform to the highest quality requirements of more
sophisticated domain ontologies regarding the intended semantics of given do-
mains, since XSDs only transport information about (1) the terminology of
individual domains, (2) the syntactic structure of sets of XML documents,
and (3) implicit semantics of XSD constructs with limited capabilities. By
automatically deriving domain ontologies out of these generated ontologies
using manually defined SWRL rules, however, we (1) reduce the complexity
of the generated ontologies and thus the underlying XSDs and (2) further sup-
plement OWL axioms with additional domain-specific semantic information
not or not satisfyingly covered by underlying XSDs.

The following minimal example shows how the complexity of simplest
structures of an XSD describing books and conforming XML is reduced by
deriving an excerpt of an OWL domain ontology and conforming RDF data:

1 XML Schema:
2 <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
3 <xsd:element name="library">
4 <xsd:complexType>
5 <xsd:sequence>
6 <xsd:element name="book" maxOccurs="unbounded">
7 <xsd:complexType>
8 <xsd:sequence>
9 <xsd:element name="title" type="xsd:string"/>

10 </xsd:sequence>
11 </xsd:complexType>
12 </xsd:element>
13 </xsd:sequence>
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14 </xsd:complexType>
15 </xsd:element>
16 </xsd:schema>
17

18 RDFS/OWL:
19 :Book a owl:Class .
20 :title a owl:DatatypeProperty ;
21 rdfs:domain :Book ;
22 rdfs:range xsd:string .
23

24 XML:
25 <library>
26 <book>
27 <title>The Hound of the Baskervilles</title>
28 </book>
29 </library>
30

31 RDF:
32 :The-Hound-Of-The-Baskervilles a :Book ;
33 :title "The Hound of the Baskervilles" .

By evaluating the proposed approach, we verify the hypothesis that the
effort and the time needed to deliver high quality domain ontologies from
scratch by reusing information of already existing XSDs properly describing
particular domains is much less than creating domain ontologies completely
manually and from the ground up. The resulting domain ontologies are as
usable as ontologies that are entirely constructed by hand, but with a fraction
of necessary effort.

Contribution 2-5 Minimized effort and time designing OWL domain on-
tologies from scratch when XML Schemas, adequately describing conceptual
models about data of particular domains, have already been developed

Chapter Overview

Section 4.1 serves to provide an overview of the individual stages of the overall
process semi-automatically deriving OWL domain ontologies based on already
existing XSDs adequately describing particular domains. In Section 4.2, we
depict how we mapped each component of the XSD meta-model to suitable
OWL constructs of an ontology representing the XSD meta-model in OWL.
The conceptual mappings for the transformations of XSDs into OWL on the
schema level, which are based on the proposed XSD meta-model ontology, are
delineated in Section 4.3.

To get a better idea of (1) how XSDs and XML documents are translated
into OWL ontologies’ TBoxes and conforming ABoxes and (2) how domain
ontologies are derived out of generated ontologies on the schema and the
instance level, we present the application of the proposed approach in form
of a complete case study and this way motivate its usage (see Section 4.4).
By means of an intuitive running example, we demonstrate a fast way to
disseminate the huge amount of already existing XSDs and XML documents of
the commonly accepted and widely used XML standards DDI-Codebook and
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DDI-Lifecycle. We show how we make profit of all the work which has already
been done by the DDI community and derive the OWL domain ontology
DDI-RDF.

In Section 4.5, we accurately describe the implementation of the automatic
transformations of XSDs into OWL ontologies. The evolved concept behind
the implementation enables to manage just with XML technologies as the
mapping itself is completely realized using XSLT.

In Section 4.6, we provide a comprehensive evaluation of our approach.
The first step is to automatically transform XSDs into OWL ontologies. To
prove the generality of these transformations, we show that any XSD can be
converted to OWL by executing generic test cases created out of the XSD
meta-model. In addition, we converted XSDs of six widely known, accepted,
and used XML standards from the academic (i.a., DDI-Lifecycle) and indus-
trial field. The second step is to define SWRL rules on the schema level by
hand to derive OWL domain ontologies automatically out of the generated
ontologies on both the instance and schema level. We specified SWRL rules for
three domain ontologies - two from the industrial and one from the academic
area. To verify the hypothesis, we (1) determined the effort and expenses for
the traditional manual approach and (2) estimated the effort and expenses for
the suggested semi-automatic approach. DDI-RDF serves as domain ontology,
since we were part of the process creating it manually from scratch.

4.1 Designing OWL Domain Ontologies based on XML
Schemas

In this section, we give an overview of the individual stages of the overall
process semi-automatically deriving OWL domain ontologies based on already
existing XSDs adequately representing particular domains.

Mapping of the XML Schema Meta-Model to OWL

XML documents may be instances of XSDs determining the terminology of
certain domains and the syntactic structure of sets of XML documents. XSDs
themselves are instances of the XSD meta-model, the XML Schema for XML
Schemas, or also called the XSD abstract data model [304]. The W3C defined
XSD, the class of XML documents, recursively using the XSD language to
describe the XSD language, just like XSD documents are XML documents
describing XML documents.

On the meta-model level M2, we mapped all components of the XSD
meta-model to classes, universal restrictions on data properties, and universal
restrictions on object properties of the XSD Meta-Model Ontology, an ontology
we defined to represent the XSD meta-model in OWL (see Section 4.2).
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Multi-Level Semi-Automatic Process Designing Domain
Ontologies Based on XML Schemas

The multi-level process designing domain ontologies based on already available
XSDs [46] is divided into the following consecutive steps (see Figure 4.1):

1. XSDs and XML documents are automatically transformed into OWL on-
tologies and conforming RDF data (see Section 4.3)

1.1. XSDs are converted to OWL ontologies on level M1 using XSLT [176]
1.2. XML documents are translated into RDF data corresponding to these

OWL ontologies on level M0 using Java
2. OWL domain ontologies and conforming RDF data are automatically de-

rived by means of manually defined SWRL rules (see Section 4.4)
2.1. SWRL rules are manually specified on level M1
2.2. Reasoning is automatically executed on the generated ontologies on

levels M0 and M1 using the predefined SWRL rules

Fig. 4.1. Multi-Level Process Designing Domain Ontologies Based on XML Schemas

Automatic Transformations of XML Schemas and XML
Documents into OWL Ontologies and RDF Data

The knowledge representation formalism Description Logics [12, 13, 196] with
its well-studied theoretical properties provides the foundational basis for the
transformations of XSDs and conforming XML documents into OWL ontolo-
gies and corresponding RDF data. On the schema level M1, we automatically
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convert XSDs to (1) OWL sub-classes of the XSD Meta-Model Ontology’s
classes, (2) OWL hasValue restrictions on data properties of the XSD Meta-
Model Ontology, and (3) OWL universal restrictions on object properties of
the XSD Meta-Model Ontology using XSLT transformations. As each compo-
nent of the XSD abstract data model is covered, any XSD can be translated
into an OWL ontology. On the instance level M0, XML documents are con-
verted to ABoxes of generated ontologies using Java. We use Java and not
XSLT as Java scales and performs better when transforming very large XML
documents.

Semi-Automatic Derivation of OWL Domain Ontologies

We use SWRL rules [154] (1) to automatically deduce domain ontologies on
the schema level M1 and (2) to automatically infer RDF data corresponding
to domain ontologies on level M0 out of generated ontologies and conforming
RDF data. Ontology engineers and domain experts may work together to
define SWRL rules manually only on the schema level M1. SWRL rules are
executed by rule engines like Pellet [285], the OWL 2 reasoner for Java. The
antecedents of SWRL rules are specified according to syntactic structures of
XML documents. The consequents of SWRL rules, on the other side, are
defined according to conceptual models of domain ontologies. Consequently,
conceptual models have to be devised in a first stage. Finally, XML data
conforming to XSDs can be converted to instances of domain ontologies.

Domain ontologies’ classes and properties can be annotated as being equiv-
alent to classes and properties of commonly accepted and widely adopted
ontologies such as SKOS [219] and the DCMI Metadata Terms [103]. As a
consequence, reasoners may use additional semantics defined by other ontolo-
gies for their deductions [197].

4.2 Mapping of the XML Schema Meta-Model to OWL

When representing the components of XSDs in XML, they are called ele-
ment information items (EIIs). On the meta-model level M2, we mapped all
meta EIIs to classes, universal restrictions on data properties, and universal
restrictions on object properties of the XSD Meta-Model Ontology, an OWL
ontology we defined to represent the XSD meta-model in OWL. Tables 4.1 and
4.2 sketch these mappings. We use Description Logics to formally represent
OWL language constructs.

Meta-EIIs

We mapped meta-EIIs to classes of the XSD Meta-Model Ontology. The class
Element, for instance, stands for the XSD meta-model’s meta-EII element.
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Table 4.1. Mapping of the XML Schema Meta-Model to OWL (1)

XSD meta-model XSD Meta-Model Ontology

meta-EIIs classes: <meta-EII>

attributes of meta-EIIs 1. data properties:
<attribute>_<domain meta-EII>_String

2. universal restrictions on data properties:
<domain meta-EII> �

@ <attribute>_<domain meta-EII>_String.String

any well-formed XML 1. data properties:
content of meta-EIIs any_<Appinfo|Documentation>_String
Appinfo | Documentation 2. universal restrictions on data properties:

<Appinfo|Documentation> �
@ any_<Appinfo|Documentation>_String.String

texts contained in 1. data properties:
elements and attributes value_<Element|Attribute>_String
of XML documents 2. universal restrictions on data properties:

<Element|Attribute> �
@ value_<Element|Attribute>_String.String

attributes of meta-EIIs 1. object properties:
referring to meta-EIIs <ref|substitutionGroup|refer>_<domain
(attributes ref, refer <meta-EII>_range meta-EII>

substitutionGroup) 2. universal restrictions on object properties:
<domain meta-EII> �

@ <ref|substitutionGroup|refer>_<domain
<meta-EII>_range meta-EII>.<range meta-EII>

Attributes of Meta-EIIs

Attributes of meta-EIIs are mapped to

1. data properties <attribute>_<domain meta-EII>_String with the class stand-
ing for the domain meta-EII as domain and the class representing the XSD
built-in primitive datatype xsd:string as range, and

2. universal restrictions on these data properties <domain meta-EII> � @

<attribute>_<domain meta-EII>_String.String which express that the class
including all domain meta-EII individuals is defined as the sub-class of
the anonymous complex super-class of all the instances which can only
have relationships along these data properties to literals of the datatype
xsd:string or have no relationships via these data properties.

The attribute name of the meta-EII element, e.g., is mapped to the
data property name_Element_String and to the data property’s universal re-
striction Element � @ name_Element_String.String as elements can only have
name_Element_String relationships to String literals.
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Any Well-Formed XML Content of Meta-EIIs Appinfo or
Documentation

The meta-EIIs Appinfo and Documentation may comprise any well-formed
XML content such as XML elements, XML attributes, and plain text. For this
reason, any well-formed XML content of the meta-EIIs Appinfo and Documen-
tation is mapped (1) to the data properties any_<Appinfo|Documentation>_String
and (2) to the universal restrictions on these data properties <Appinfo|Documen

tation> � @ any_<Appinfo|Documentation>_String.String.

Texts Contained in Elements and Attributes of XML Documents

Elements and attributes of XML documents may comprise text. Thus, we
added (1) the data properties value_<Element|Attribute>_String and (2) uni-
versal restrictions on these data properties <Element|Attribute> � @ value_

<Element|Attribute>_String.String to the XSD Meta-Model Ontology. On the
instance level, the XML document excerpt <Label lang="en">Age</Label> is
converted to the property assertions value_Element_String (Label-Individual

..., ’Age’) and value_Attribute_String (Lang-Individual...,’en’).

Attributes of Meta-EIIs Referring to Meta-EIIs (Attributes ref,
refer, and substitutionGroup)

Attributes of meta-EIIs like ref, refer, and substitutionGroup referring to other
meta-EIIs are mapped (1) to the object properties <ref|substitutionGroup|ref
er>_<domain meta-EII>_<range meta-EII> and (2) to the universal restrictions
on these object properties <domain meta-EII> � @ <ref|substitutionGroup|ref

er>_<domain meta-EII>_<range meta-EII>.<range meta-EII>. According to the
object property’s universal restriction Element � @ ref_Element_Element.Elem

ent, e.g., elements can only have ref_Element_Element relationships to ele-
ments or no such relations.

Attributes of Meta-EIIs Referring to Type Definitions (Attributes
type and base)

Meta-EIIs’ attributes base and type refer to simple ur-type, simple type, or
complex type definitions.

An ur-type definition [24] is present in each XSD and serves as the root of
the type definition hierarchy for that schema. A simple type definition [24] is
a set of constraints which applies to the values of attributes and the text-only
content of elements. Each simple type definition, whether a built-in primitive
XSD datatype or user-defined, is a restriction of some particular simple base
type definition, the simple ur-type [24].

A complex type definition [24] is a set of attribute declarations and a con-
tent type, applicable to the attributes and children of an EII respectively. The
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Table 4.2. Mapping of the XML Schema Meta-Model to OWL (2)

XSD meta-model XSD Meta-Model Ontology

attributes of meta-EIIs 1. object properties:
referring to type definitions <type|base>_<domain meta-EII>_Type

(attributes type and base) 2. universal restrictions on object properties:
<domain meta-EII> �

@ <type|base>_<domain meta-EII>_Type.Type

attribute memberTypes 1. object property:
memberTypes_union_Type

2. universal restriction on the object property:
<union> � @ memberTypes_union_Type.Type

meta-EIIs’ part-of 1. object properties:
relationships contains_<domain meta-EII>_<range meta-EII>

2. universal restrictions on object properties:
<domain meta-EII> �

@ contains_<domain meta-EII>_<range meta-EII>.

<range meta-EII>

sequence of in meta-EII 1. object property:
sequence contained sequence

meta-EIIs 2. universal restrictions on the object property:
<sequence> � @ sequence.<range meta-EII>

content type may require the children to contain neither EIIs nor character
information items (that is, to be empty), to be a string which belongs to a
particular simple type or to contain a sequence of EIIs which conforms to a
particular model group, with or without character information items as well.

1. Following the same applied mapping procedure, these attributes would be
mapped to six object properties <type|base>_<domain meta-EII>_SimpleType

|AnySimpleType|ComplexType. XSLT transformations generating OWL on-
tologies out of XSDs would have to determine the object properties’ range
classes AnySimpleType, SimpleType, and ComplexType as part of the ob-
ject properties’ identifiers at runtime. If the attributes type or base either
point to simple or complex type definitions defined in external XSDs,
these XSDs would have to be physically available to traverse their XML
trees and to iterate over each simple and complex type definition. In many
cases, however, external XSDs are not physically available. For this rea-
son, we mapped the attributes type and base to the object properties
<type|base>_<domain meta-EII>_Type with the range class Type represent-
ing the super-class of all three specific type definitions.

2. The attributes base and type are also mapped to the object proper-
ties’ universal restrictions <domain meta-EII> � @ <type|base>_<domain

meta-EII>_Type.Type. Considering the object property’s universal restric-
tion Element � @ type_Element_Type.Type, elements can only have type_
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Element_Type relationships to Type individuals, which are simple or com-
plex type definitions in this case, or have no such relations.

Attribute memberTypes

On the schema level M1, the attribute memberTypes of the EII union may
include simple ur-type and simple type definitions separated by blank charac-
ters. Thus, the attribute memberTypes is mapped (1) to the object property
memberTypes_union_Type and (2) to the object property’s universal restriction
<union> � @ memberTypes_union_Type.Type.

Meta-EIIs’ Part-Of Relationships

Meta-EIIs may contain other meta-EIIs. For this reason, (1) the object proper-
ties contains_<domain meta-EII>_<range meta-EII> and (2) associated univer-
sal restrictions <domain meta-EII> � @ contains_<domain meta-EII>_<range

meta-EII>.<range meta-EII> are specified. In accordance with the object prop-
erty’s universal restriction Sequence � @ contains_Sequence_Element.Element,
sequences can only include elements along the object property contains_Sequen

ce_Element and no instances of other classes.

Sequence of in Meta-EII ‘sequence’ Contained Meta-EIIs

The universal restrictions on the object properties contains_Sequence_<range

meta-EII> state for each range meta-EII annotation, element, group, choice,
and sequence) that range instances have to be of the classes representing
these range meta-EIIs. The object property sequence and the object property’s
universal restriction <sequence> � @ sequence.<range meta-EII> are added to
the XSD Meta-Model Ontology which enables to capture the strict order of
the in the EII sequence contained EIIs when XSDs are converted to OWL
ontologies on the schema level M1.

4.3 Transformations of XML Schemas into OWL
Ontologies

On the schema level M1, XSDs are translated into (1) OWL sub-classes of XSD
Meta-Model Ontology’s classes, (2) OWL hasValue restrictions on XSD Meta-
Model Ontology’s data properties, and (3) OWL universal restrictions on XSD
Meta-Model Ontology’s object properties. Like heavyweight ontologies [294],
generated ontologies consist of a hierarchy of classes as well as relations with
domains and ranges. Tables 4.3 and 4.4 demonstrate these transformations
from XSDs into OWL ontologies.
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Table 4.3. Transformation of XML Schemas into OWL Ontologies (1)

XSDs OWL ontologies

EIIs sub-classes of XSD Meta-Model Ontology’s classes:
<EII> � <meta-EII>

values of EIIs’ hasValue restrictions on
attributes XSD Meta-Model Ontology’s data properties:

<domain EII> �

D <attribute>_<domain meta-EII>_String.{<String>}
any well-formed XML hasValue restrictions on
content of EIIs XSD Meta-Model Ontology’s data properties:
Appinfo|Documentation <Appinfo|Documentation> �

D any_<Appinfo|Documentation>_String.{<String>}
values of EIIs’ universal restrictions on
attributes referring to XSD Meta-Model Ontology’s object properties:
EIIs (attributes ref, <domain EII> �

substitutionGroup, refer) @ <ref|substitutionGroup|refer>_
<domain meta-EII>_<range meta-EII>.<range EII>

EIIs

EIIs are transformed into sub-classes of the XSD Meta-Model Ontology’s
classes representing meta-EIIs: <EII> � <meta-EII>. Hence, all generated
OWL ontologies are based on the same reusable OWL classes. To show
an example, the XSD’s EII element with the name Label (<xs:element

name="Label"/>) is converted into the class Label-Element... (the automati-
cally generated unique IRI is obviously much more complex than the stated
one) which is defined as sub-class of the class Element (Label-Element... �

Element), since on the instance level M0 all Label individuals are also part of
the Element class extension which means that Label elements are elements.

Values of EIIs’ Attributes

Values of EIIs’ attributes are translated into hasValue restrictions on XSD
Meta-Model Ontology’s data properties <domain EII> � D <attribute>_<doma

in meta-EII>_String.{<String>}, as classes representing domain EIIs are de-
fined as sub-classes of the anonymous complex super-classes of all the in-
dividuals which have at least one relationship along the data properties
<attribute>_<domain meta-EII>_String to the specified individuals of the
XSD’s primitive datatype string. The value of the attribute name of the EII
element (<xs:element name="Label"/>) is transformed into the data property
hasValue restriction Label-Element... � D name_Element_String.{’Label’},
as on the instance level M0 Label elements must have a name which is Label
and which is of the datatype string.
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Any Well-Formed XML Content of EIIs Appinfo or
Documentation

Any well-formed XML content of the EIIs Appinfo and Documentation such
as XML elements, XML attributes, and plain text is converted to hasValue re-
strictions on XSD Meta-Model Ontology’s data properties <Appinfo|Documentat
ion> � D any_<Appinfo|Documentation>_String.{<String>}. The text contained
in the EII appinfo (<xs:appinfo> This is an application information. </xs:

appinfo>) is converted to the data property hasValue restriction Appinfo1...

� D any_Appinfo_String.{’This is an application information.’}.

Values of EIIs’ Attributes Referring to EIIs (Attributes ref, refer,
and substitutionGroup)

Values of EIIs’ attributes ref, substitutionGroup, and refer referring to other
EIIs are translated into XSD Meta-Model Ontology’s object properties’ uni-
versal restrictions <domain EII> � @ <ref|substitutionGroup|refer>_<domain

meta-EII>_<range meta-EII>.<range EII>. The reference to the global element
Label (<xs:element ref="Label"/>), e.g., is converted to the object property’s
universal restriction Label-Element-Reference1... � @ ref_Element_Element.

Label-Element... .

Table 4.4. Transformation of XML Schemas into OWL Ontologies (2)

XSDs OWL ontologies

values of EIIs’ attributes universal restrictions on
referring to type XSD Meta-Model Ontology’s object properties:
definitions (attributes <domain EII> �

type and base) @ <type|base>_<domain meta-EII>_Type.<range EII>

values of attribute univeral restriction on
memberTypes XSD Meta-Model Ontology’s object property:

<union> �

@ memberTypes_Union_Type.<union of Type EIIs>

EIIs’ part-of universal restrictions on
relationships XSD Meta-Model Ontology’s object properties:

<domain EII> �

@ contains_<domain meta-EII>_

<range meta-EII>.<union of range EIIs>

sequence of in EII universal restrictions on
sequence contained EIIs XSD Meta-Model Ontology’s object property:

<sequence> � @ sequence.<union of EIIs>

Values of EIIs’ Attributes Referring to Type Definitions
(Attributes type and base)

Values of EIIs’ attributes type and base referring to simple ur-type, sim-
ple type, or complex type definitions are converted to universal restric-
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tions on XSD Meta-Model Ontology’s object properties <domain EII> � @

<type|base>_<domain meta-EII>_Type.<range EII>. The value ’VariableType’
of the attribute type of the EII element with the name Variable (<xs:element

name="Variable" type="VariableType" />), e.g., is transformed into the object
property’s universal restriction Variable-Element... � @ type_Element_Type.

VariableType-Type... .

Values of the Attribute memberTypes

The attribute memberTypes of the EII union may contain multiple simple ur-
type and simple type definitions separated by blank characters. Consequently,
values of this attribute are converted to the XSD Meta-Model Ontology’s ob-
ject property’s universal restrictions <union> � @ memberTypes_Union_Type.

<union of Type EIIs>. The attribute memberTypes, e.g., contains references
to one simple ur-type and two simple type definitions (<xs:union memberTypes

= "SimpleType1 SimpleType2 xs:string"/>). The value of the attribute mem-
berTypes is translated into the object property’s universal restriction Union1...

� @ memberTypes_Union_Type.(SimpleType1-Type... \ SimpleType2-Type...

\ string-Type...).

EIIs’ Part-Of Relationships

As EIIs may include one to multiple other EIIs, universal restrictions on XSD
Meta-Model Ontology’s object properties <domain EII> � @ contains_<domain

meta-EII>_<range meta-EII>.<union of range EIIs> are used to transform EIIs’
part-of relationships. The following sequence, e.g., contains only one ele-
ment EII, a reference to the global element Label : <xs:sequence> <xs:element

ref="Label"/> </xs:sequence>. According to the object property’s universal
restriction Sequence1 ... � @ contains_Sequence_Element.Label-Element-Ref

erence1..., the range of the object property can only comprise instances of
the class representing the reference to the global element Label. If EIIs have
more than one EII as content, the domain EIIs can only have relationships
along particular object properties to individuals of the anonymous complex
super-class consisting of the union of multiple classes representing the con-
tained range EIIs. The part-of relationship of the sequence (<xs:sequence>

<xs:element ref="VariableName"/> <xs:element ref="Label"/> </xs:sequence

>), e.g., is transferred into the object property’s universal restriction Sequence1

... � @ contains_Sequence_Element.(VariableName-Element-Reference1...

\ Label-Element-Reference2...).

Sequence of in EII sequence Contained EIIs

According to the universal restrictions on the object properties contains_Seque
nce_Element|Sequence, sequences can only have relationships along these ob-
ject properties to elements or other sequences. Sequences, however, may
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not only include either elements or sequences but also annotations, groups,
and choices simultaneously. Furthermore, sequences are not only containers
of EIIs. They also store the strict order of contained EIIs. As sequences
may contain multiple EIIs and in order to store the strict order of in se-
quences included EIIs, we added the object property sequence and the univer-
sal restrictions <sequence> � @ sequence.<union of EIIs> to the XSD Meta-
Model Ontology. According to the XSD fragment <xs:sequence> <xs:element

ref="VariableName"/><xs:element ref="Label"/></xs:sequence>, the sequence
instance either contains VariableName or Label individuals representing refer-
ences to global elements: Sequence1... � @ sequence.(VariableName-Element

-Reference1... \ Label-Element-Reference2...). The sequence of EIIs is ex-
tracted in compliance with the order of the union operands.

4.4 Case Study

To get a better idea of (1) how XSDs and XML documents are translated into
OWL ontologies’ TBoxes and ABoxes and (2) how OWL domain ontologies are
derived out of generated ontologies on the schema level M1 and the instance
level M0, we demonstrate the application of the proposed approach in form
of a complete case study and this way motivate its usage. This case study
serves to show in detail how excerpts of the OWL domain ontology DDI-
RDF are deduced out of XSDs which are part of the DDI XML standard.
More specifically, in case specific conditions are fulfilled it is derived that a
certain resource represents a social science variable with a particular variable
label. In the following, we describe the individual steps of the overall process
designing OWL domain ontologies based on already existing XSDs by means
of an intuitive running example.

4.4.1 Automatic Transformations of XML Schemas and XML
Documents into OWL Ontologies and RDF Data

Figure 4.2 visualizes the input of the transformation process: The XML doc-
ument (on the right) storing information about variables and the XSD deter-
mining the XML document’s syntactic structure. XML elements Variable may
contain XML elements Label corresponding to variable labels which may in-
clude plain text such as ’Age’. Variable is an instance of the XSD EII element
whose name attribute has the value Variable and whose type attribute has
the value VariableType referring to the complex type definition VariableType.
This complex type with the name VariableType comprises the EII complex-
Content including the XSD component extension which contains a sequence.
This sequence comprises a reference to the global element with the name Label
which is the type of the XML element Label. The global XML element Label
may include strings of the datatype xsd:string.
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Fig. 4.2. XML Schemas and XML Documents

Overview of the Transformation Process

To be able to use this rich syntactic information for the ontology, instead
of just using the instance data, we first transform the schema automatically
with generic XSLT transformations to an OWL ontology. The transformation
process of XSDs to OWL ontologies on the schema level M1 covering the most
important transformation steps is summarized as follows:

1. XSD’s EIIs are transformed into OWL classes having globally unique IRIs
2. OWL classes are defined as sub-classes of classes which are specified within

the XSD Meta-Model Ontology
3. Values of EIIs’ attributes are converted to OWL hasValue restrictions on

XSD Meta-Model Ontology’s data properties
4. (1) EIIs’ part-of relationships, (2) XML elements’ and XML attributes’

content, (3) EIIs’ attributes’ values referring to either type definitions or
(4) other EIIs, and (5) sequences of in EII sequence contained EIIs are
transformed into OWL universal restrictions on XSD Meta-Model Ontol-
ogy’s object properties
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On the instance level M0, XML documents are converted to RDF corre-
sponding to the generated OWL ontologies. Thereby, XML elements and XML
attributes are concrete instances of OWL classes which are generated during
the transformation process of XSDs to OWL ontologies. These instances must
follow the semantics stated in the generated OWL ontologies and extracted
from the underlying XSDs.

1. OWL Classes

The first step is to convert each XSD’s EII to an OWL class (see Figure 4.3).
The XSLT assigns OWL class identifiers considering the developed naming
conventions (see Section 4.5) which ensure the global uniqueness of the IRIs.
In contrast to OWL, XSD has very few restrictions on unique naming. IRIs
of OWL ontologies have to be quite long to be globally unique. The global el-
ement Variable (<xs:element name= "Variable".../>), e.g., is translated into
the class Variable-Element... with the meta-EII element as part of its identi-
fier.

Fig. 4.3. Transformation of XML Schemas’ EIIs into OWL classes
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2. Sub-Class Relationships

Now, XSD’s EIIs are transformed into OWL classes with globally unique IRIs.
But so far, the transformation does not cover the XSDs’ semantics. Semantics
is added by defining sub-class relationships between classes of generated on-
tologies and classes of the XSD Meta-Model Ontology (see Figure 4.4). OWL
classes of generated ontologies are defined as sub-classes of the super-classes
specified in the XSD Meta-Model Ontology: <EII> � <meta-EII>. Classes
standing for specific XSD elements like Variable-Element..., e.g., are trans-
lated into sub-classes of the super-class Element representing the meta-EII el-
ement (<Variable-Element...> � <Element>), as each particular EII element
is also part of the Element class extension, i.e., in more simple terms, each
specific XSD element is obviously an XSD element.

Fig. 4.4. Sub-Class Relationships

3. HasValue Restrictions on Data Properties

So far, the XSD’s EIIs are converted to sub-classes of the XSD Meta-Model
Ontology’s super-classes representing XSD meta-EIIs. As next step EIIs’ at-
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tributes’ values are converted to XSD Meta-Model Ontology’s data properties
<attribute>_<domain meta-EII>_String and to hasValue restrictions on these
data properties: <domain EII> � D <attribute>_<domain meta-EII>_String.

{<String>} (see Figure 4.5). The value ’Variable’ of the attribute name of
the EII element (<xs:element name="Variable".../>), e.g., is translated into
the XSD Meta-Model Ontology’s data property name_Element_String point-
ing from an element to a string and into the hasValue restriction on this data
property Variable-Element... � D name_Element_String.{’Variable’}, since
Variable-Element... resources must have at least one relationship along the
data property name_Element_String to the string ’Variable’. In other words,
variable XSD elements must have the name ’Variable’.

Fig. 4.5. HasValue Restrictions on Data Properties

4. Universal Restrictions on Object Properties

XSD’s EIIs and XSD’s EIIs’ attributes’ values are now translated. The last
step is to transform (1) EIIs’ part-of relationships, (2) XML elements’ and
attributes’ content, (3) EIIs’ attributes’ values referring to either type defini-
tions or (4) other EIIs, and (5) sequences of in EII sequence contained EIIs
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into universal restrictions on XSD Meta-Model Ontology’s object properties
(see Figure 4.6).

Values of EIIs’ attributes referring to other EIIs are transformed into XSD
Meta-Model Ontology’s object properties’ universal restrictions <domain EII>

� @ <ref|substitutionGroup|refer>_<domain meta-EII>_<range meta-EII>.

<range EII>. The value ‘Label’ of the element EII’s attribute ref (<xs:element

ref="Label"/>) referring to the EII element with the name Label, e.g., is trans-
lated into the object property ref_Element_Element and its universal restric-
tion Label-Element-Reference1... � @ ref_Element_Element.Label-Element...

Fig. 4.6. Universal Restrictions on Object Properties

Values of EIIs’ attributes referring to type definitions are translated
into universal restrictions on XSD Meta-Model Ontology’s object proper-
ties: <domain EII> � @ type|base_<domain meta-EII>_Type.<range EII>. The
value ‘VariableType’ of the attribute type of the EII element with the name
Variable (<xs:element name="Variable" type="VariableType"/>), e.g., is con-
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verted to the object property’s universal restriction Variable-Element... � @

type_Element_Type.VariableType-Type... .

The part-of relationship of the EII sequence is translated into the object
property’s universal restriction Sequence1... � @ contains_Sequence_Element.

Label-Element-Reference1... . The sequence includes only a reference to the
global element Label. The strict order of the EIIs contained in the sequence,
on the other side, is expressed by the object property’s universal restriction
Sequence1... � @ sequence.Label-Element-Reference1... .

As resources of the class Label-Element..., i.e., Label elements contained
in XML documents on the instance level M0, may have text as content,
i.e., String-Type... literals, the data property value_Element_String is intro-
duced and the data property’s universal restriction Label-Element... � @

value_Element_String.String is defined. On level M0, RDF data conforming
to the generated OWL ontology may be validated on this universal restriction
in order to ensure that the only allowed content of Label elements is of the
datatype xsd:string.

While this means that we have many classes with long names after the
transformations, it also means that we adequately model the complete syn-
tactic and semantic relationships of the XSD components. We can fully ap-
preciate how components relate to other ones on all three levels of instance,
schema and meta-model. Since this is all automatically generated, this mul-
tiplication of information is not detrimental, but instead allows us to use all
this data in a way that is fully integrated with each other. At no cost of time
for the ontology engineer. Now, all the information located in the underlying
XSDs of a specific domain is also expressed in generated OWL ontologies.

4.4.2 Semi-Automatic Derivation of OWL Domain Ontologies

As XSDs’ structures and therefore generated ontologies’ structures may
be quite complex, generated ontologies are not directly as useful as manually
created domain ontologies. Therefore, our idea is to perform semi-automatic
transformations based on the automatically created ontologies using SWRL
rules. By transforming generated ontologies into domain ontologies (1) we re-
duce the complexity of generated ontologies and (2) we further supplement
the OWL axioms of generated ontologies with additional domain-specific se-
mantic information not satisfyingly covered by underlying XSDs. Figure 4.7
visualizes the generated OWL ontology, its RDF representation, the OWL
domain ontology’s extraction to be derived, and the SWRL rule’s atoms.

In our case study, we want to deduce an excerpt of the DDI-RDF vocab-
ulary. More specifically, we want to derive that the resource with the URI
age, which is assigned to the class Variable-Element..., is a variable and that
the same resource has the variable label ‘Age’ of the datatype xsd:string.
Thereby, the data property skos:prefLabel represents relationships between
variables and variable labels. The following code fragment demonstrates the
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Fig. 4.7. Derive Domain Ontology

antecedent and the consequent of the SWRL rule which is executed by a rule
engine to derive these two statements.

1 (?domain type Element Type ?a) ^ (?a contains ComplexType ComplexContent ?b) ^
2 (?b contains ComplexContent Extension ?c) ^ (?c contains Extension Sequence ?d) ^
3 (?d contains Sequence Element ?e) ^ (?e ref Element Element ?f) ^
4 (?f rdf:type Label�Element...) ^ (?f value Element String ?range)
5 Ñ (?domain rdf:type Variable) ^ (?domain skos:prefLabel ?range)

Ontology engineers and domain experts may work together to define
SWRL rules [154] manually only on level M1 (1) to automatically deduce
OWL domain ontologies out of generated OWL ontologies on level M1 and
(2) to automatically infer RDF data corresponding to domain ontologies out
of RDF data conforming to generated ontologies on level M0. The antecedents
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of SWRL rules are specified according to syntactic structures of XML docu-
ments. The consequents of SWRL rules, on the other side, are defined accord-
ing to conceptual models of domain ontologies.

The two statements can be derived since the individual age, substituting
the SWRL variable ?domain, has a relationship along the object property
type_Element_Type to an individual replacing the variable ?a. The ?a resource
is linked to an instance ?b via the contains_ComplexType_ComplexContent ob-
ject property. Further, there’s a navigation path from a ?b individual to an
?f instance through the stated object properties. As XML elements Label,
which are instances of the EII element with the name ‘Label’ (<xs:element

name="Label"/>), may contain text nodes such as ‘Age’, ?f instances are as-
signed to the class Label-Element..., representing the EII element with the
value ‘Label’ of the attribute name. This class assignment ensures that de-
rived variable labels are only those strings contained in the element Label and
not in other elements. According to the SWRL rule, ?f resources must have
at least one relationship along the data property value_Element_String to a
?range literal which is substituted by the string ‘Age’ in the example. The
concrete instances age and ‘Age’ correspond to the antecedent of the SWRL
rule, i.e., there is a navigation path from the resource age to the string ‘Age’
through the stated object and data properties. Therefore, it can be inferred
that the resource age is a variable with the variable label ‘Age’.

The advantage of SWRL rules is that it works purely on the schema level
and can thus be reused for any instance or document data we may encounter.
By means of SWRL rules, generated ontologies’ instances can be mapped to
individuals of widely used and accepted ontologies like Dublin Core or SKOS.
Another benefit is that all XML data conforming to XSDs can be imported
automatically as domain ontologies’ instances. In summary, the process of
designing domain ontologies can be supplemented with all of the XSDs’ in-
formation about the domains of interest, which allows us to automate part of
the modeling and also to keep it closer to the original intention of the XSD.

4.5 Implementation

In this section, we accurately describe the implementation of the automatic
transformations of XSDs into OWL ontologies on level M1 using XSLT [47].
The reason why we use XSLT [176] in its current version 2.0 for these trans-
formations and therefore the contribution of this implementation approach is
that we completely stay in the XML world as we only use XML technologies
for (1) representing XSDs and OWL ontologies and (2) transforming XSDs
into OWL by traversing XSDs’ document trees. Another minor reason is that
we achieve good performance when executing the XSLT stylesheet.

The second contribution is that we propose naming conventions ensuring
global uniqueness of OWL equivalents of XSD constructs. The XSLT pro-
cessor automatically assigns OWL class identifiers considering these naming
conventions to ensure global uniqueness of IRIs. In contrast to OWL, XSD
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has very few restrictions on unique naming. Hence, IRIs of OWL ontologies
have to be quite long to be globally unique.

In the subsequent sub-sections, we precisely delineate the consecutive steps
converting XSDs to OWL. For each step, we depict the naming conventions
when translating XSD constructs into OWL constructs, describe the invoked
XSLT templates and the passed parameters, and give intuitive concrete ex-
amples.

4.5.1 Definition of the RDF Document Header Information

RDF documents consist of a header and an ontology. The RDF document
header information, including an XML declaration, an optional document
type declaration, an RDF document header, and an OWL document header,
is specified by invoking appropriate templates within the template for the
document node representing the input XSD. The file extension of the output
file is set to .owl, since OWL documents, which are RDF documents as well,
are generated. The XML declaration includes the XML version and the char-
acter set, the encoding of the RDF document’s content. The document type
declaration contains internal entity declarations specifying abbreviations for
long namespace URI strings used in the RDF document. The RDF document
header defines the default namespace of the RDF document, the base URL,
as well as the XSD, RDF, RDFS, OWL, and XSD Meta-Model Ontology’s
namespace prefixes. The OWL document header includes the statements of
the ontology IRI, the ontology version IRI, and the instruction importing the
XSD Meta-Model Ontology’s classes, data properties, object properties, and
class axioms.

The ontology IRI is set to <base ontology IRI>/<local ontology IRI>.owl

and is used to identify the ontology in the context of the WWW. The ontology
IRI represents the URL where the latest version of the ontology is published.
The base ontology IRI is defined as http://www.semanticweb.org/ontologies/
XMLSchemaOntologies. The local part of the ontology IRI is determined as
follows: The XSD’s EIIs are specified in the target namespace of the XSD. If
the target namespace of the current XSD is stated, this information is used as
local ontology IRI. As the target namespace is not a mandatory attribute of
XSDs’ root elements, a user-defined local ontology IRI can also be passed to
the translation process as input parameter. Finally, if there is neither a target
namespace specified nor a user-defined local ontology IRI delivered, the file
name of the input XSD serves as local part of the ontology IRI.

The ontology version IRI corresponds to <base ontology IRI>/<local

ontology IRI>:<local ontology version IRI>.owl and represents the URL
where a given version of the ontology is published. Initially, the local part
of the ontology version IRI, representing the version of the ontology the input
XSD is mapped to, is set to 1.0.0. Minor changes of the generated ontologies
and the underlying XSDs will cause adjustments of the last two version lev-
els and major ontology changes will cause modifications of the first version
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stage. After the definition of the RDF document header information and the
ontology, the RDF document is closed by calling an appropriate template.

4.5.2 Traversing the XML Schema’s Document Tree

After the definition of the RDF document header information, the OWL
ontology representing the input XSD is generated by invoking the template on-
tologyDefinition. This template serves as starting point to traverse the XSD’s
document tree in order to implement the transformations between the input
XSD and the OWL ontology beginning with the root element of XSDs schema.

Each XSD EII is converted to OWL constructs by calling a template which
is named according to the XSD Meta-Model Ontology’s super-class represent-
ing the individual meta-EII. The template Schema, for instance, in called in
order to create the class representing the EII schema. As the EII schema is
the root element of any XSD, the XSLT processor always calls the template
Schema first.

EIIs may contain other EIIs. Part-of-relationships are mapped to object
properties contains_<domain meta-EII>_<range meta-EII> of the XSD Meta-
Model Ontology. Thereby, containing EIIs are in the domain of these ob-
ject properties and contained EIIs in their range. As, for instance, the EII
schema may contain complex type definitions, the object property con-
tains_Schema_ComplexType is defined in the XSD Meta-Model Ontology.

After calling the template Schema, the XSD’s root element is located at
the current position of the process traversing the XSD’s document tree. At
this time, the root element stands for the current domain EII, which may in-
clude multiple range EIIs as content. After the mapping of the current domain
EII to an equivalent class of the generated ontology, the contained range EIIs
have to be defined by calling appropriate templates representing the meta-EIIs
they belong to. As the EII schema may include complex type definitions, the
template ComplexType is invoked for each top-level complex type definition.
Then, each active complex type definition stands for the current domain EII
which is situated at the current position of the traversing process. When a
range EII should be defined, the template named according to the appropriate
meta-EII is called with the two parameters containing the name of the range
meta-EII (e.g., ComplexType) and the name of the range EII. After the tem-
plate is invoked, the range meta-EII becomes the current domain meta-EII
and the range EII becomes the current domain EII, since the domain EII is
now located at the current position of the XSD’s document tree traversing
process. If the root element of the input XSD includes the complex type defi-
nition ComplexType1, e.g., this complex type definition is defined by invoking
the template ComplexType with ComplexType as the new domain meta-EII
parameter and ComplexType1-Type_<local ontology IRI>-Schema as the new
domain EII parameter.

The identifier of the current domain EII is built hierarchically containing
all the names of the ancestor EIIs and the name of the current domain EII.
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The ancestor EIIs include the current domain EII either directly or indirectly.
The identifier of the XSD’s root element is the rightmost part of the cur-
rent domain EII’s name. As a consequence, the names of the active domain
EIIs are built recursively. The input XSD’s identifier is set to <local ontology

IRI>-Schema (e.g., inputXMLSchema-Schema for the input XSD with the tar-
get namespace inputXMLSchema). The containing ancestor EIIs, contributing
to the overall identifier of the current domain EII, are separated by the un-
derscore character. Each EII’s associated meta-EII is also part of the entire
identifier, separated from the individual EII by the minus sign. If the complex
type definition called ComplexType1, for example, is contained in the input
XSD’s root element with the target namespace inputXMLSchema, the class
with the identifier ComplexType1-Type_inputXMLSchema-Schema is added
to the generated ontology.

4.5.3 Definition of Domain EIIs as Sub-Classes of XML Schema
Meta-Model Ontology’s Super-Classes

Classes, standing for domain EIIs located at the current position in the
process traversing the XSD’s document tree, are specified by invoking the
named template classDefinition with the local ontology IRI and the current
hierarchically built domain EII’s name as formal parameters. Fully qual-
ified identifiers of classes are determined according to the pattern <base

ontology IRI>/<local ontology IRI>.owl#<local class identifier>. The lo-
cal class identifier always refers to the name of the current domain EII. In the
following, the abbreviated term class identifier is used, which is equivalent
to the term local class identifier. To resolve fully qualified class identifiers,
<base ontology IRI>/<local ontology IRI>.owl# has to be added in front of
the local class identifiers.

EIIs are converted to sub-classes of the XSD Meta-Model Ontology’s
super-classes (<EII> � <meta-EII>, e.g., Element1-Element_<local ontology

IRI>-Schema � Element) by invoking the template superClassDefinition with
the XSD Meta-Model Ontology’s super-class representing the meta-EII as pa-
rameter.

4.5.4 Definition of OWL hasValue Restrictions on XML Schema
Meta-Model Ontology’s Data Properties

Values of EIIs’ attributes and any well-formed XML content included
in the EIIs Appinfo and Documentation are transformed into XSD Meta-
Model Ontology’s data properties’ hasValue restrictions <domain EII> � D

<attribute>|any_<domain meta-EII>_String.{<String>}, as the domain EII is
the sub-class of the anonymous super-class of all the individuals which have
at least one relationship along the data property <attribute>|any_<domain

meta-EII>_String to the specified individual of the primitive datatype string.
To define data property hasValue restrictions for the current domain

EII, the named template hasValueRestrictionOnDatatypeProperty is invoked
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with the name of the data property (e.g., name_ComplexType_String or
any_Documentation_String) and the hasValue restriction, which is either the
attribute value of the current domain EII (e.g., ./@name) or the current node
(.), as parameters. The presence of the optional attributes and XML contents
of EIIs is checked before the data property hasValue restriction can be defined.

If hasValue restrictions on the data properties any_<Appinfo|Documentation>
_String have to be defined, the default template for element nodes with the
template mode any is invoked. The sequence, transmitted to this template,
encompasses the current node representing the current domain EII appinfo or
documentation. The element nodes <XSD namespace prefix>:<appinfo|documen

tation> may include any well-formed XML content, i.e., text nodes, element
nodes, and attributes of element nodes. The XML content is added to the
result tree recursively by calling the element nodes’ default template with the
template mode any for all the child and descendent element nodes of the EIIs
appinfo and documentation. The element nodes appinfo and documentation
themselves are not part of the output tree. In hasValue restrictions on data
properties not allowed characters ( , ¡, ”) are escaped and the attribute
and text nodes for each current child or descendent element node are also
appended to the output tree.

4.5.5 Definition of OWL Universal Restrictions on XML Schema
Meta-Model Ontology’s Object Properties

Transformation of Values of EII’s Attributes Referring to other
EIIs or to Type Definitions

Values of EIIs’ attributes ref, substitutionGroup, and refer, referring to
other EIIs, are converted to the XSD Meta-Model Ontology’s object proper-
ties’ universal restrictions <domain EII> � @ <ref|substitutionGroup|refer>_

<domain meta-EII>_<range meta-EII>.<range EII>. The reference to the EII
attribute called a1 (<xs:attribute ref="a1"/>), for example, is transformed
into the object property universal restriction a1-Attribute-Reference<position>

_<domain EII> � @ ref_Attribute_Attribute.a1-Attribute_<local ontology

IRI>-Schema.
Values of EIIs’ attributes type and base, referring to type definitions,

are transferred into XSD Meta-Model Ontology’s object properties’ univer-
sal restrictions <domain EII> � @ type|base_<domain meta-EII>_Type.<range

EII>. The value of the attribute type of the EII element named element1
(<xs:element name="element1" type="ComplexType1"/>), for instance, is con-
verted to the object property’s universal restriction element1-Element_<local

ontology IRI>-Schema � @ type_Element_Type.ComplexType1-Type_<local ont

ology IRI>-Schema.

Definition of Universal Restrictions on Object Properties

Universal restrictions on these two object properties are specified by invok-
ing the template universalRestrictionOnObjectPropertyNotContainedRangeEle-
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ment InformationItems with the name of the object property (e.g., ref_Attribute
_Attribute or type_Element_Type), the domain EII’s identifier, and either the
name of the range EII (e.g., ./@substitutionGroup) or of the type definition
(e.g., ./@base), which represent the range EII part of the universal restric-
tion, as parameters. As the attributes, including the range EIIs of the object
properties’ universal restrictions, are not mandatory, the object properties’
universal restrictions can only be defined if the attributes are present.

In order to specify the object properties’ universal restrictions, the general
template universalRestrictionOnObjectProperty is called with the name of the
object property, the range EII’s ontology IRI, and the name of the range EII
as parameters.

The range EIIs do not have to be defined after the specification of the
object properties’ universal restrictions, since classes, representing other EIIs
or type definitions, are already defined or will still be defined in the process
traversing the XSD’s document tree.

Definition of Range EIIs’ Class Identifiers

As the range EII can be defined in an external XSD, the ontology IRI of
the range EII has to be determined first by invoking the named template get-
NotContainedRangeElementInformationItemOntologyIRI with the range EII
as formal parameter. If the attribute includes a namespace prefix, the ontology
IRI corresponds to <base ontology IRI>/<external local ontology IRI>.owl,
since the range EII is defined in an external XSD. If the attribute does not
contain a namespace prefix, the range EII is specified in the input XSD
and therefore the ontology IRI is set to <base ontology IRI>/<local ontology

IRI>.owl.
The class identifier of the range EII is determined by calling the named

template getNotContainedRangeElementInformationItemIdentifier with the
names of the range EII and the corresponding meta-EII as parameters. If
an attribute includes a namespace prefix, the referenced range EII is defined
in an external XSD. In this case, the range EII’s identifier is set to <range EII

[without namespace prefix]>-<Range meta-EII>_<external local ontology

IRI>-Schema, since it is always referenced to top-level EIIs when they are situ-
ated in external XSDs. If, however, attributes do not contain namespace pre-
fixes, the global range EIIs are specified in the input XSDs and therefore the
identifiers of the range EIIs are set to <range EII>-<Range meta-EII>_<local

ontology IRI>-Schema.
The EII key, referenced by the attribute refer of the EII keyref, is the only

referenced EII which is not located at the global position of an XSD. As EIIs
key have to be unique within an XSD, the identifiers are set as if they would
be top-level EIIs: <range EII>-Key_<local ontology IRI>-Schema. Because of
this, it can be referenced to XSD unique EIIs key as if they would be top-level
EIIs. If referenced keys are defined in external XSDs, the target namespaces
of the input XSD and of the external XSD have to be identical. Thus, the
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local ontology IRI can be used to identify the external XSD in which the key
is defined. As EIIs key are named like top-level EIIs, external XSDs do not
have to be traversed to locate the EIIs containing the keys.

If type definitions, specified in external XSDs, are referenced, the type def-
initions’ class identifiers have to be determined. The meta-EII’s name is one
part of the type definitions’ class identifiers. If specific meta-EIIs like Simple-
Type or ComplexType serve as the meta-EII parts of the type definitions’ class
identifiers, the corresponding external XSDs, in which the type definitions are
specified, have to be traversed. If, in contrast, the general meta-EII Type serves
as the meta-EII part of the type definitions’ class identifiers, the correspond-
ing external XSDs do not have to be traversed. An obligatory traversing of
external XSDs’ XML document trees would be critical, since in many cases
external XSDs are not physically available and namespaces can be imported
using arbitrary values of schemaLocation attributes. Because of these reasons,
the type definitions’ class identifiers’ meta-EII parts AnySimpleType, Simple-
Type, and ComplexType are set to Type. Type is the super-class representing
the general meta-EII of the sub-classes standing for the more specific meta-
EIIs of type definitions, i.e., simple ur-type, simple type, and complex type
definitions.

Transformation of EIIs’ Part-Of Relationships

EIIs’ part-of relationships are realized by transformations into XSD Meta-
Model Ontology’s object properties’ universal restrictions <domain EII> � @

contains_<domain meta-EII>_<range meta-EII>.<union of range EIIs>. If the
input XSD’s root element includes only one EII element (e.g., <xs:schema

...><xs:element name="element1"/></xs:schema>), the range of the object
property can only consist of individuals of one class: <local ontology IRI>-

Schema � @ contains_Schema_Element.element1-Element_<local ontology IRI>

-Schema. If, on the other side, EIIs like schema have more than one EII as
content (e.g., <xs:schema ... > <xs:element name="element1"/> <xs:element

name="element2"/> </xs:schema>), the domain EIIs can only have relation-
ships along the object property to individuals of the complex class consisting
of the union of individuals of multiple classes representing the contained range
EIIs: <local ontology IRI>-Schema � @ contains_Schema_Element.(element1-

Element_<local ontology IRI>-Schema \ element2-Element_<local ontology

IRI>-Schema).
For each XSD Meta-Model Ontology’s object property contains_<domain

meta-EII>_<range meta-EII> defined for the current domain EII’s associ-
ated meta-EII, the template universalRestrictionOnObjectPropertyContained
RangeElementInformationItems is called by passing the names of the object
property and of the current domain EII as parameters. As the template is
called for each object property contains_<domain meta-EII>_<range meta-EII>

of the current domain EII, it is if the checked current domain EII really in-
cludes the range EIIs of the given range meta-EII. Only in this case, the
universal restriction on the object property is defined.
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Definition of Range EIIs’ Class Identifiers

We iterate over all range EIIs which are contained in the current domain
EII in order to get all range EIIs’ names. The template getContainedRangeEle-
mentInformationItemIdentifier is invoked for each contained range EII with
the names of the range meta-EII and the current domain EII as formal pa-
rameters.

Range EIIs (1) may have an associated name, (2) may be references to
top-level global EIIs, or (3) may be contained without an identifier. Range
EIIs, having the attribute name, are named according to the pattern <range

EII>-<Range meta-EII>_<domain EII> (<xs:simpleType name="st3">, e.g., is con-
verted to st3-Type_<domain EII>). As EIIs key have to be unique within an
XSD, their identifiers are determined as if they would be top-level EIIs: <range
EII>-Key_<local ontology IRI>-Schema.

Range EIIs, which do not have an associated name, may have an attribute
ref. If the attribute ref contains a namespace prefix, the referenced EII is
defined in an external XSD and the input XSD’s range EII’s identifier is set
to <range EII [without namespace prefix]>-<Range meta-EII>-Reference

<position()>-<namespace URI>_<domain EII>. <xs:attribute ref="xml:lang"

/>, e.g., is transformed into lang-Attribute-Reference<position>-http://www.

w3.org/XML/1998/namespace_<domain EII>. The namespace URI is part of the
identifier, as references to top-level EIIs defined in different namespaces are
possible (e.g., <xs:attribute ref="lang"/> and <xs:attribute ref="xml:lang"

/>). Identifiers without namespace URI statements would not be unique.
Domain EIIs may include multiple range EIIs of the same meta-EII with
identical ref attribute values (e.g., <xs:extension...> <xs:attributeGroup

ref="ag1"/> <xs:attribute Group ref="ag1"/> </xs:extension>). To ensure
the uniqueness of range EIIs’ identifiers, their positions within the domain
EII have to be part of their identifiers. If the attribute ref does not include
a namespace prefix, the referenced EII is specified in the input XSD and the
name of the input XSD’s referencing EII is determined as <range EII>-<Range

meta-EII>-Reference<position()>_<domain EII> (<xs:attribute ref="a3"/>,
e.g., is translated into a3-Attribute-Reference<position>_<domain EII>).

As domain EIIs may include multiple range EIIs of the same meta-EII
having no attributes name or ref, these range EIIs are identified using se-
quential numbers: <Range meta-EII><position()>-<Range meta-EII>_<domain

EII> (e.g., <xs:schema> <xs:annotation/> <xs:annotation/> </xs:schema> is
transformed into Annotation1-Annotation_<local ontology IRI>-Schema and

Annotation2-Annotation_<local ontology IRI>-Schema). If simple or complex
type definitions are included, the first range meta-EII part of the identifier is
set to the more specific type definition SimpleType or ComplexType and the
second range meta-EII part of the name is set to the super-class representing
the more general type definition Type (e.g., SimpleType1-Type_<domain EII>)

in order to distinguish simple and complex type definitions.
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A variable stores the string sequence of IRIs of the ontologies in which
the individual range EIIs of the given range meta-EII are defined. To realize
this, the template getContainedRangeElementInformationItemOntologyIRI is
called for each range EII. As contained range EIIs are always specified in the
input XSD, the ontology IRI is determined as <base ontology IRI>/<local

ontology IRI>.owl.

Definition of Universal Restrictions on Object Properties

To specify the universal restriction on the given object property, the XSLT
processor invokes the general template universalRestrictionOnObjectProperty
with the name of the object property and the two string sequences consisting
of the range EIIs’ identifiers and the associated ontology IRIs as parameters.
As the active domain EII may contain one or multiple range EIIs of the same
meta-EII, the class corresponding to the current domain EII can only have
contains_<domain meta-EII>_<range meta-EII> relationships with one specific
class representing a range EII or with a union of specific classes standing for
the contained EIIs.

Definition of Range EIIs

As contained EIIs are referenced in definitions of universal restrictions
on the object properties contains_<domain meta-EII>_<range meta-EII>, the
range EIIs have to be defined as well by invoking the template rangeEle-
mentInformationItemsDefinition with the object property’s name and the
domain EII’s identifier as parameters. For each range EII of the given range
meta-EII (e.g., for each global complex type definition contained in the input
XSD’s root element schema), the range EII’s identifier is determined as shown
before and the template named after the range meta-EII is invoked recursively
in order to define each range EII of the given meta-EII. The range meta-EII
and the range EII serve as parameters. After the template is invoked, the
passed range EII then becomes the current domain EII, which is now at the
current position in the process traversing the XSD’s document tree.

4.6 Evaluation

We provide a comprehensive evaluation4 of our meta-model based approach
designing domain ontologies based on already existing XSDs and thereby ver-
ify the subsequent hypothesis. In a technical report, we delineate the details
of the evaluation [48].

Hypothesis The effort and the time needed to deliver high quality domain on-
tologies from scratch by reusing information of already existing XML Schemas
adequately describing particular domains is much less than creating domain
ontologies completely manually and from the ground up.

4 Evaluation results on GitHub
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4.6.1 Automatic Transformations of XML Schemas into OWL

The first step is to transform XSDs into OWL on the schema level M1 com-
pletely automatically using an XSLT stylesheet. To prove the generality of
these transformations, we show that any XSD can be converted to OWL. We
derived a complete set of generic test cases from the XSD meta-model in order
to cover all possible and complex cases when transforming XSDs into OWL.
By means of these generic test cases, we verify that any XSD can be translated
into an OWL ontology and that XML documents corresponding to XSDs can
be converted to an RDF representation conforming to generated ontologies.

In addition, we converted XSDs of six widely known, accepted, and applied
XML standards from the academic and the industrial field: (1) DDI-Lifecycle
[94] (see Section 3.2), (2) the Dublin Core Metadata Element Set [104] to of-
fer basic cataloging information and improved document indexing for search
engines (3) the DCMI Metadata Terms [103] to increase the specificity of
metadata enabling searches to be more specific, (4) KML [323], an XML lan-
guage focused on geographic visualization, (5) the Atom Syndication Format
(Atom) [240], an XML-based document format that describes lists of related
information known as feeds, and (6) the Annotation and Image Markup Project
(AIM) [78] to add information to images in a clinical environment.

We translated 10,000 XSD constructs contained in 20 XSDs of the DDI-
Lifecycle XML standard in only 30 seconds, the XSD of the Dublin Core
Metadata Element Set with its 40 XSD constructs is transformed in one sec-
ond, and the five XSDs of the DCMI Metadata Terms containing 250 XSD
constructs in 7 seconds. All calculations can be made in under a minute. The
effort in computing time is negligible in comparison with the time needed for
the second step of the semi-automatic transformation process.

4.6.2 Semi-Automatic Derivation of OWL Domain Ontologies

The second step is to define SWRL rules on the schema level M1 by hand in
order to derive OWL domain ontologies automatically out of generated ontolo-
gies on the schema and the instance level. We specified SWRL rules for three
domain ontologies - two from the industrial and one from the academic area:
(1) the Dublin Core Metadata Element Set, (2) the DCMI Metadata Terms,
and (3) DDI-RDF. We defined all SWRL rules for the Dublin Core Metadata
Element Set. For the DCMI Metadata Terms and DDI-RDF, we specified for
each type of SWRL rules a significant amount of representative SWRL rules.
For DDI-RDF, we estimated 15 person-hours to define 200 SWRL rules. As
these SWRL rules are written by hand, a graphical user interface could as-
sist users to create SWRL rules semi-automatically which would lead to time
improvements.

To verify the hypothesis, we (1) determined the effort and expenses for
the traditional manual approach and (2) estimated the effort and expenses for
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the suggested semi-automatic approach. DDI-RDF serves as domain ontology,
since we were part of the process creating it manually from scratch.

For the evaluation of the semi-automatic approach, we distinguish the
time needed (1) for the formalization of the ontology and (2) to develop its
conceptual model in advance. As we can reuse well-elaborated domain knowl-
edge contained in multiple XSDs and as we can see from our experience with
DDI-RDF, the effort required for the development of the conceptual model
following the semi-automatic approach would be 50 percent of the working
time spent for the traditional manual approach, i.e., 95 person-days or 17,750
euros5 would have to be invested to evolve the ontology’s conceptual model.
For the formalization of DDI-RDF, i.e., the definition of OWL axioms and
SWRL rules, we would have to invest nearly 2 person-days or 350 euros. In
total, we would have to spend 97 person-days or about 18,000 euros to de-
sign the DDI-RDF domain ontology based on already available XSDs which
are part of the DDI-Lifecycle XML standard. In addition, travelling, lodging,
and board expenses have to be invested which allows domain experts to come
together to discuss conceptual ideas. We calculate 20,000 euros for these ex-
penses which is the half of the travelling, lodging, and board expenses spent
for the traditional manual approach.

In total, 38,000 euros would be needed to design DDI-RDF using the semi-
automatic approach. In contrast, the total expenses creating DDI-RDF by
hand are 75,000 euros including working times as well as travelling, lodging,
and board expenses. The result of the evaluation is that for the proposed
semi-automatic approach we need only half of the monetary amount which
therefore verifies the hypothesis.

4.7 Conclusion

To directly validate XML using common RDF validation tools against seman-
tically rich OWL axioms when applying them in terms of constraints and ex-
tracting them from XML Schemas properly describing particular domains, we
propose on formal logics and the XML Schema (XSD) meta-model based au-
tomatic transformations of arbitrary XSDs and conforming XML documents
into OWL ontologies and corresponding RDF data. This does not cause any
additional manual effort as these constraints have already been defined by the
XML community within underlying XSDs.

OWL axioms are extracted out of XSDs either (1) explicitly according to
XSD constructs determining the syntactic structure of sets of XML documents
or (2) implicitly according to the implicit semantics of XSD constructs. To
model explicit and implicit semantics in a semantically correct way, we for-
mally underpin transformations themselves on semantically rich OWL axioms
for which Description Logics provides the foundational basis.

As we base these transformations on the XSD meta-model, we are able to
convert arbitrary complex structures of XSDs using identical transformation

5 In the following we state rounded monetary values.
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rules without any information loss. As XSDs are commonly used to specify
structural relationships of objects in data-centric XML documents, we pre-
serve all the structural information of XSD constructs.

The approach aims to speed up the task developing high quality domain
ontologies from the ground up. XML Schemas serve as a basis since all the
contained information about a particular domain is reused. Although RDF
representations of generated ontologies can directly be validated against ex-
tracted constraints, our idea is to automatically derive more sophisticated
domain ontologies and conforming RDF using manually created SWRL rules.

Generated ontologies are not directly as useful as manually created do-
main ontologies as they are not conform to the highest quality requirements
of more demanding domain ontologies regarding the intended semantics of
given domains, since XSDs only transport information about (1) the syntac-
tic structure of sets of XML documents, (2) the terminology of individual
domains, and (3) implicit semantics of XSD constructs with limited capabili-
ties. By deriving domain ontologies, however, we (1) reduce the complexity of
generated ontologies and thus underlying XSDs and (2) further supplement
OWL axioms with additional domain-specific semantic information not or not
satisfyingly covered by XSDs.

Acknowledgements
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RDF Validation Requirements and Types of
Constraints on RDF Data

In 2013, the W3C organized the RDF Validation Workshop [202], where ex-
perts from industry, government, and academia presented and discussed first
case studies for constraint formulation and RDF data validation. Partly as
follow-up to the workshop and partly due to further expressed requirements,
two working groups on RDF validation have been established in 2014 to de-
velop a language for expressing constraints on RDF data and defining struc-
tural constraints on RDF graphs: the W3C RDF Data Shapes Working Group
and the DCMI RDF Application Profiles Task Group.

Our work is supposed to lay the ground for subsequent activities in these
working groups. We propose to relate existing solutions to case studies and use
cases by means of requirements, extracted from the latter and fulfilled by the
former. We therefore collected the findings of the workshop and the working
groups and initiated a community-driven database of requirements to formu-
late constraints and validate RDF data against constraints. Additionally, we
added requirements from other sources, particularly in the form of constraint
types that are supported by existing approaches, e.g., those expressible in
OWL 2. The intention of this database is to collaboratively collect case studies
provided by various data institutions, use cases, requirements, and solutions
in a comprehensive and structured way.1 The database is publicly available at
http://purl.org/net/rdf-validation, continuously extended, and open for fur-
ther contributions. We implemented the database using the widely adopted
open source content management system Drupal.2

Based on our work in these working groups and jointly identified require-
ments, we have published by today 81 types of constraints that are required by
various stakeholders for data applications, that must be expressible by con-
straint languages to meet all commonly approved requirements, and which

1 At the time of the publication of this thesis, the database encompasses 17 case
studies, 65 use cases, 216 requirements, and 15 solutions. The database also con-
tains requirements not (yet) approved by the W3C and DCMI working groups.

2 https://www.drupal.org

http://purl.org/net/rdf-validation
https://www.drupal.org
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form the basis of this thesis. Each constraint type, from which concrete con-
straints are instantiated to be checked on the data, corresponds to a specific
requirement in the database. For each constraint type, we give a formal def-
inition and a detailed explanation in form of intuitive example constraints
(see Chapter A of the appendix [135]). In a technical report, we provide ad-
ditional examples for each constraint type represented in different constraint
languages [51].

We use this collection of constraint types to gain a better understanding
of the expressiveness of existing solutions, i.e., to evaluate to what extent
each requirement is fulfilled by the most common constraint languages (see
Chapter B of the appendix [135]). We highlight strengths and weaknesses of
these languages, identify gaps that still need to be filled, recommend possible
solutions for their elimination, and give directions for the further development
of constraint languages.

SPARQL [134] and the SPARQL Inferencing Notation (SPIN) [185], a
means to represent SPARQL in RDF, are powerful and widely used for con-
straint formulation and RDF data validation. With its direct support of val-
idation via SPARQL, SPIN is very popular to check constraints [115]. The
power of SPIN is shown in Table 5.1, in which we list in percent (and abso-
lute numbers in brackets) how many constraint types each of the most com-
mon constraint languages enables to express. We consider SPIN and SPARQL
as low-level implementation languages, in contrast to high-level constraint
languages where specific language constructs exist to define constraints in
a declarative and in comparison more intuitive and concise way – although
SPARQL aficionados might object particularly to the latter point.

Table 5.1. Constraint Type Specific Expressivity of Constraint Languages

DSP ReSh ShEx SHACL OWL 2 SPIN (SPARQL)
17.3 (14) 25.9 (21) 29.6 (24) 51.9 (42) 67.9 (55) 100.0 (81)

We further see that OWL 2 is currently the most expressive high-level con-
straint language, at least according to the pure number of constraint types
supported. This does not preclude that other languages are better suited for
certain applications, either because they support some types that cannot be
expressed by OWL 2 or because the constraint representation is more appeal-
ing to the data practitioners – producers as well as consumers who might have
different needs and preferences.

It is not surprising that, at the time the thesis is published, only half of the
constraint types are supported by the Shapes Constraint Language (SHACL)
[186], a language for describing and constraining the contents of RDF graphs.
The reason for this is that the development of SHACL is not yet finished.
The W3C working group started developing the language at the end of 2014
and plans to publish SHACL as a W3C recommendation in June 2017.3 We

3 http://www.w3.org/2014/data-shapes/charter

http://www.w3.org/2014/data-shapes/charter
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assume and expect that SHACL will cover the majority of the constraint
types at the time the language is published. In addition to the high-level
vocabulary SHACL provides, so-called native constraints can be defined using
SPARQL and similar execution languages like JavaScript. Native constraints
in a language like SPARQL typically provide a lot of flexibility enabling to
formulate constraints of constraint types that are only expressible by plain
SPARQL. With such an extension mechanism, the combination of SHACL
and SPARQL enables to express each constraint type.

In a heterogeneous environment like the Web, there is not necessarily a
one-size-fits-all solution, especially as existing solutions should rather be in-
tegrated than replaced, not least to avoid long and fruitless discussions about
the “best” approach. The evaluation on the constraint type specific expressiv-
ity of the most common constraint languages reveals that none of the current
solutions, we consider as high-level constraint languages, satisfies all iden-
tified requirements and that rather different solutions cover distinct sets of
requirements.

In Section 5.1, we depict why to take case studies and use cases as a start-
ing point when developing standards and software in general and constraint
languages in particular, why requirements form the basis for development,
and why to use them to evaluate existing solutions. Subsequently, we show
in form of intuitive and representative examples how constraints of different
types are expressed by current constraint languages (see Section 5.2).

5.1 From Case Studies to Solutions (and Back)

In the development of standards, as in software, case studies and use cases
are usually taken as a starting point. In case studies, the full background
of a specific scenario is described, where the standard or the software is to
be applied. Use cases are smaller units where a certain action or a typical
user inquiry is described. They can be extracted from and thus linked to case
studies, but often they are defined directly.

Requirements are extracted from use cases. They form the basis for devel-
opment and are used to evaluate existing solutions. Via requirements, solutions
get linked to use cases and case studies and it becomes visible which solutions
can be used to meet the use cases in a given scenario and what drawbacks
might be faced. Figure 5.1 visualizes the conceptual model underlying the
database.

Table 5.2 shows a simplified excerpt of the database. The general structure
is a polyhierarchy from case studies over use cases and requirements to solu-
tions. All instances contain at least uplinks to the next level, i.e., solutions are
linked to requirements that they fulfill and possibly requirements that they
explicitly do not fulfill. Requirements are linked to use cases, which are linked
to case studies.
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Fig. 5.1. Conceptual Model of the RDF Validation Database

Table 5.2. Example Content of the RDF Validation Database

ID Title Links Description

Case Studies
CS-1 DPLA UC-1 The Digital Public Library of America maintains an

access portal to digitized cultural heritage objects...

Use Cases
UC-1 Recommend

Property
CS-1 Some properties may not be mandatory, but may be

recommended...

Requirements
R-1 Optional

Properties
UC-1 A property can be marked as optional. Valid data

may contain the property.
R-2 Recommended

Properties
UC-1,
R-3

An optional property can be marked as recom-
mended. A report of missing recommended proper-
ties is generated. If R-2 is fulfilled, then R-3 is ful-
filled.

R-3 Classified
Properties

UC-1 A custom class like “recommended” or “deprecated”
can be assigned to properties and used for reporting.

Solutions
S-1 ShEx R-1/2/3 Fulfilled: R-1 (minimum cardinality = 0, maximum

cardinality = 1). Not fulfilled: R-2, R-3.
S-2 SPIN R-1/2/3 Fullfilled: R-1, R-2, R-3.
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The polyhierarchy allows the linking of all elements to more than one
parent, requirements particularly are linked to several use cases. Our goal is
to maintain a set of distinct requirements. Only this way it is possible to
evaluate the solutions regarding their suitability for the use cases and case
studies. Use cases can be shared between case studies as well, but this is
harder to maintain as use cases are less formal and often more case specific
than a requirement.

Requirement R-2 is an example, where a link between requirements is
established. In this case, the link is used to point to a requirement that is
broader than the more specific requirement, i.e., should requirement R-2 be
fulfilled, then requirement R-3 is automatically fulfilled as well. In a similar
way requirements can be linked to duplicates if they should occur. The goal
is a relative stability regarding the requirements, which then can prove to be
useful to mediate between data and solution providers.

5.2 Overview of Constraint Types

Collaboratively collected case studies and use cases led to the definition of
requirements on constraint formulation and RDF data validation. Based on
this comprehensive set of commonly approved requirements, we hitherto have
published 81 types of constraints that are required by various stakeholders
for data applications and from which concrete constraints are instantiated
to be checked on the data. Each constraint type corresponds to a particular
requirement in the database. In this section, we show in form of concrete,
intuitive, and representative examples how constraints of different types are
expressed by current constraint languages.

5.2.1 Cardinality Restrictions

Class expressions in OWL 2 can be formed by placing restrictions on the
cardinality of object and data property expressions [27]. Such class expres-
sions contain those individuals that are connected by a property expression
to at least (minimum qualified (R-75) / unqualified (R-81) cardinality restric-
tions), at most (maximum qualified (R-76) / unqualified (R-82) cardinality
restrictions), and exactly (exact qualified (R-74) / unqualified (R-80) cardi-
nality restrictions) a given number of instances (of a specific class expression,
in case of a qualified cardinality restriction). Qualified and unqualified cardi-
nality restrictions can be expressed by OWL 2, ShEx, DSP, SHACL, SPIN,
SPARQL, and to a limited extend ReSh.

The constraint type minimum qualified cardinality restrictions corresponds
to the requirement R-75. Requirements are identified in the database by an R
and a number, additionally an alphanumeric technical identifier is provided to
ensure global uniqueness of requirements.4 The minimum qualified cardinality

4 In this case R-75-MINIMUM-QUALIFIED-CARDINALITY-RESTRICTIONS
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restrictions constraint type can be instantiated to formulate the constraint
that publications must have at least one author which must be a person. This
constraint can be expressed as follows using different constraint languages:

1 OWL 2: :Publication rdfs:subClassOf
2 [ a owl:Restriction ;
3 owl:minQualifiedCardinality 1 ;
4 owl:onProperty :author ;
5 owl:onClass :Person ] .
6

7 ShEx: :Publication { :author @:Person{1, } }
8

9 ReSh: :Publication a rs:ResourceShape ; rs:property [
10 rs:propertyDefinition :author ;
11 rs:valueShape :Person ;
12 rs:occurs rs:One-or-many ; ] .
13

14 DSP: [ dsp:resourceClass :Publication ; dsp:statementTemplate [
15 dsp:minOccur 1 ;
16 dsp:property :author ;
17 dsp:nonLiteralConstraint [ dsp:valueClass :Person ] ] ] .
18

19 SHACL: :PublicationShape
20 a sh:Shape ;
21 sh:scopeClass :Publication ;
22 sh:property [
23 sh:predicate :author ;
24 sh:valueShape :PersonShape ;
25 sh:minCount 1 ; ] .
26 :PersonShape
27 a sh:Shape ;
28 sh:scopeClass :Person .
29

30 SPIN: CONSTRUCT { [ a spin:ConstraintViolation ... . ] } WHERE {
31 ?subject
32 a ?C1 ;
33 ?predicate ?object .
34 BIND ( qualifiedCardinality ( ?subject, ?predicate, ?C2 ) AS ?c ) .
35 BIND( STRDT ( STR ( ?c ), xsd:nonNegativeInteger ) AS ?cardinality ) .
36 FILTER ( ?cardinality < ?minimumCardinality ) .
37 FILTER ( ?minimumCardinality = 1 ) .
38 FILTER ( ?C1 = :Publication ) .
39 FILTER ( ?C2 = :Person ) .
40 FILTER ( ?predicate = :author ) . }
41

42 SPIN function qualifiedCardinality:
43 SELECT ( COUNT ( ?arg1 ) AS ?c ) WHERE { ?arg1 ?arg2 ?object . ?object a ?arg3 . }

Note that the SPIN representation of the constraint is used to directly
check the constraint on RDF data using a SPARQL CONSTRUCT query
that creates a constraint violation triple if the constraint is violated.

The constraint type Language tag cardinality (R-48, R-49) is used to re-
strict data properties to have a minimum, maximum, or exact number of
relationships to literals with selected language tags. One of the SPARQL tem-
plates provided by [192] can be used, e.g., to check that no language is used
more than once per property. Thereby, P1 is the property pointing to the
literal and V1 is the language we want to check:
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1 DQTP:
2 SELECT DISTINCT ?s
3 WHERE { ?s %%P1%% ?c
4 BIND ( lang(?c) AS ?l )
5 FILTER (isLiteral (?c) && lang(?c) = %%V1%%)}
6 GROUP BY ?s HAVING COUNT (?l) > 1

In most library applications, cardinality shortcuts (R-228) tend to appear
in pairs, with optional / mandatory establishing minimum cardinality restric-
tions on properties and repeatable / non-repeatable for maximum cardinality
restrictions (see Table 5.3 for the possible pairs of cardinality shortcuts).

Table 5.3. Cardinality Shortcuts

cardinality shortcuts [min,max]
optional & non-repeatable [0,1]
optional & repeatable [0,*]
mandatory & non-repeatable [1,1]
mandatory & repeatable [1,*]

5.2.2 Disjointness, Exclusivity, and Inclusivity

With the constraint type disjoint classes (R-7), one can state that all of
the selected classes are pairwise disjoint; that is, no individual can be at the
same time an instance of a pair of these classes. Nothing can be a book and
a journal article at the same time, is an example constraint of this type:

1 OWL 2 (Turtle):
2 :Book owl:disjointWith :Journal-Article .

The constraint type disjoint properties (R-10) enables to define that given
properties are pairwise disjoint; that is, no individual x can be connected
to an individual y by each pair of these properties - author and title in the
subsequent example:

1 OWL 2 (Turtle):
2 :author owl:propertyDisjointWith :title .

Constraints of the type context-specific exclusive or of property groups (R-
13) restrict individuals of given classes to have all properties of exactly one
of multiple mutually exclusive property groups. Publications, e.g., are either
identified by an ISBN and a title (for books) or by an ISSN and a title (for
periodical publications), but it should not be possible to assign both identifiers
to a given publication:

1 ShEx:
2 :Publication {
3 ( :isbn xsd:string , :title xsd:string ) |
4 ( :issn xsd:string , :title xsd:string ) }
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As Moby-Dick is a publication with an ISBN and a title without an ISSN,
Moby-Dick is considered as a valid publication. By building rather complex
disjoint unions of intersections of class expressions, we are able to construct
context-specific exclusive or of property groups constraints in OWL 2:

1 OWL 2 (Turtle):
2 [ rdf:type owl:Class ;
3 owl:disjointUnionOf (
4 [ rdf:type owl:Class ;
5 owl:intersectionOf (
6 [ rdf:type owl:Restriction ;
7 owl:minQualifiedCardinality 1 ;
8 owl:onProperty :isbn ;
9 owl:onClass xsd:string ]

10 [ rdf:type owl:Restriction ;
11 owl:qualifiedCardinality 1 ;
12 owl:onProperty :title ;
13 owl:onClass xsd:string ] ) ]
14 [ rdf:type owl:Class ;
15 owl:intersectionOf (
16 [ rdf:type owl:Restriction ;
17 owl:minQualifiedCardinality 1 ;
18 owl:onProperty :issn ;
19 owl:onClass xsd:string ]
20 [ rdf:type owl:Restriction ;
21 owl:qualifiedCardinality 1 ;
22 owl:onProperty :title ;
23 owl:onClass xsd:string ] ) ] ) ] .

An OWL 2 disjoint union axiom states that a class C is a disjoint union
of the class expressions CEi, 1 ¤ i ¤ n, all of which are pairwise disjoint. The
extensions of all CEi exactly cover the extension of C. Thus, each instance of
C is an instance of exactly one CEi, and each instance of CEi is an instance
of C [27].

Constraints of the type Context-specific inclusive or of property groups (R-
227 ) are used to check if individuals within a specific context match at least
one of a set of inclusive property groups, i.e., that individuals within that
context must have all property links of at least one of the inclusive property
groups. The context may be a shape, an application profile, or in most cases
a class. A person, e.g., must have either a name or at least one given name
and a family name. In contrast to an exclusive or of property groups, a person
should also be considered to be valid if, e.g., a name and a family name are
stated.

1 OWL 2 (Turtle):
2 [ rdf:type owl:Class ;
3 owl:unionOf (
4 [ rdf:type owl:Restriction ;
5 owl:qualifiedCardinality 1 ;
6 owl:onProperty foaf:name ;
7 owl:onClass xsd:string ]
8 [ rdf:type owl:Class ;
9 owl:intersectionOf (

10 [ rdf:type owl:Restriction ;
11 owl:minQualifiedCardinality 1 ;
12 owl:onProperty foaf:givenName ;
13 owl:onClass xsd:string ]
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14 [ rdf:type owl:Restriction ;
15 owl:qualifiedCardinality 1 ;
16 owl:onProperty foaf:familyName ;
17 owl:onClass xsd:string ] ) ] ) ] .

Although this kind of constraints can be realized in OWL 2, its definition
is not that intuitive and declarative. Exactly the same constraint with the
same meaning can be expressed more concisely with ShEx:

1 ShEx:
2 Person {
3 ( foaf:name xsd:string
4 |
5 foaf:givenName xsd:string+ ,
6 foaf:familyName xsd:string ) }

5.2.3 Constraints on RDF Properties

Constraints of the constraint type functional properties (R-57/65) state
that the object or data properties pi (1 ¤ i ¤ n) are functional within the
context of the class C - that is, for each individual i1 of the class C, there can
be at most one distinct individual i2 such that i1 is connected by pi to i2. As
the property title is functional, a book can have at most one distinct title and
a clash is caused if the book Huckleberry-Finn, e.g., has more than one title.
The data property isbn is functional, since books can only have one ISBN.

1 OWL 2 (Turtle):
2 :title a owl:FunctionalProperty .

Constraints of the constraint type inverse-functional properties (R-58)
state that the object properties pi (1 ¤ i ¤ n) are inverse-functional within
the context of the class C - that is, for each individual i1, there can be at
most one individual i2 such that i2 is connected by pi with i1. In DDI-RDF,
resources are uniquely identified by the property adms:identifier, which is
therefore inverse-functional.

1 OWL 2 (Turtle):
2 adms:identifier a owl:InverseFunctionalProperty .

The primary key properties (R-226) constraint type is often useful to de-
clare a given (data) property p as the primary key of a class C, so that a
system can enforce uniqueness. Books, e.g., are uniquely identified by their
ISBN, i.e., the property isbn is inverse functional. The meaning of this con-
straint is that ISBN identifiers can only have isbn relations to at most one
distinct book. Keys, however, are even more general, i.e., a generalization of
inverse functional properties [279]. A key can be a data, an object property, or
a chain of properties. For these generalization purposes, as there are different
sorts of keys, and as keys can lead to undecidability, Description Logics is
extended with a special construct keyfor [211] which is implemented by the
OWL 2 hasKey construct:
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1 OWL 2 (Turtle):
2 :Book owl:hasKey ( :isbn ) .

Sub-properties (R-54/64) are analogous to subsumption, i.e., sub-class re-
lationships. With sub-properties, one can state that the property p1 is a sub-
property of the property p2 - that is, if an individual i1 is connected by p1
to an individual i2 or a literal l, then i1 is also connected by p2 to i2/l. If
a journal volume has an editor relationship to a person, e.g., then the jour-
nal volume must also have a creator link to the same person, i.e., editor is a
sub-property of creator. If we validate against this sub-properties constraint
and the data contains the triple editor (A+Journal-Volume, A+Editor), then
the triple creator (A+Journal-Volume, A+Editor) has to be stated explicitly
to prevent the constraint to be violated. In contrast, if the second triple is not
present in the data, a violation occurs.

1 OWL 2 (Turtle):
2 :editor rdfs:subPropertyOf :creator .

Object property paths (R-55) (or object property chains) is the more com-
plex form of the sub-properties constraint type. With object property paths,
one can state that, if an individual i1 is connected by a sequence of object
properties p1, ..., pn with an individual i2, then i1 is also connected with i2 by
the object property p. As Stephen-Hawking is the author of the book A-Brief-
History-Of-Time whose genre is Popular-Science, the object property path
authorOf � genre � authorOfGenre infers that Stephen-Hawking is an author
of the genre Popular-Science. In case the last triple is not present in the data,
the object property paths constraint is violated.

1 OWL 2 (Turtle):
2 authorOfGenre owl:propertyChainAxiom ( :authorOf :genre ) .

5.2.4 Constraints on RDF Objects

It is a common requirement to narrow down the value space of properties
by an exhaustive enumeration of allowed values - literals (R-37 ) or objects
(R-30 ). This is often rendered in drop down boxes or radio buttons in user
interfaces. A constraint of this type ensures that all instances of a given class
C can only have relations via a specific object or data property p to individuals
ii or literals li (1 ¤ i ¤ n) of a set of allowed individuals/literals. Consider the
following example of a simple constraint of that type stating that books on
the topic computer science can only have ”Computer Science”, ”Informatics”,
and ”Information Technology” as subjects:

1 SPARQL:
2 SELECT ?subject ?predicate ?literal
3 WHERE {
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4 ?subject rdf:type ?subC .
5 ?subC rdfs:subClassOf* :Computer-Science-Book .
6 ?subject ?subOP ?literal .
7 FILTER ( ?predicate = ?subOP )
8 ?subOP rdfs:subPropertyOf* :subject .
9 FILTER ( ?literal != "Computer Science" )

10 FILTER ( ?literal != "Informatics" )
11 FILTER ( ?literal != "Information Technology" ) }
12

13 DSP:
14 [ dsp:resourceClass :Computer-Science-Book ;
15 dsp:statementTemplate [
16 dsp:property :subject ;
17 dsp:literalConstraint [
18 dsp:literal "Computer Science" , "Informatics" , "Information Technology" ] ] ] .
19

20 ReSh:
21 :Computer-Science-Book a oslc:ResourceShape ;
22 oslc:property [ oslc:propertyDefinition :subject ;
23 oslc:allowedValues [ oslc:allowedValue
24 "Computer Science" , "Informatics" , "Information Technology" ] ] .
25

26 SHACL:
27 :Computer-Science-Book-Shape
28 a sh:Shape ;
29 sh:scopeClass :Computer-Science-Book ;
30 sh:property [
31 sh:predicate :subject ;
32 sh:allowedValues
33 ( "Computer Science" "Informatics" "Information Technology" ) ; ] .
34

35 ShEx:
36 :Computer-Science-Book {
37 :subject ( "Computer Science" "Informatics" "Information Technology" ) }
38

39 OWL 2 (Turtle):
40 :subject rdfs:range :Computer-Science-Book-Subjects .
41 :Computer-Science-Book-Subjects owl:equivalentClass [ a rdfs:Datatype;
42 owl:oneOf ( "Computer Science" "Informatics" "Information Technology" ) ] .

It should be possible to declare the default value for a given property, so
that input forms can be pre-populated and to insert a required property that
is missing. A default value is normally used when creating resources. Default
values for objects (R-31 ) or literals (R-38 ) of given properties p within the
context of given classes C are inferred automatically when these properties are
not present in the data. Per default, the status of a book should be marked as
published, i.e., the value of the property isPublished should be true for books
in case the property is not stated for a certain book.

1 SPIN:
2 owl:Thing
3 spin:rule [ a sp:Construct ; sp:text """
4 CONSTRUCT {
5 ?subject :isPublished true . }
6 WHERE {
7 ?subject a :Book .
8 FILTER NOT EXISTS { ?subject :isPublished ?literal } . } """ ; ] .
9

10 ReSh:
11 :BookResourceShape
12 a oslc:ResourceShape ;
13 oslc:property [
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14 oslc:propertyDefinition :isPublished ;
15 oslc:defaultValue true ] .
16

17 SHACL:
18 :BookShape
19 a sh:Shape ;
20 sh:scopeClass :Book ;
21 sh:property [
22 sh:predicate :isPublished ;
23 sh:defaultValue true ; ] .

In some cases, resources must be members of listed controlled vocabularies.
Constraints of the type membership in controlled vocabularies (R-32 ) guar-
antee that individuals of a given class are assigned to the class skos:Concept
and included in at least one of possibly multiple controlled vocabularies. In
other words, these skos:Concepts can only be related to controlled vocabularies
contained in a list of allowed controlled vocabularies via the object properties
skos:inScheme and/or skos:hasTopConcept. Furthermore, listed controlled vo-
cabularies must be assigned to the class skos:ConceptScheme. If a QB dimen-
sion property, e.g., has a qb:codeList, then the value of the dimension prop-
erty on every qb:Observation must be in that code list. Resources of the type
disco:SummaryStatistics, e.g., can only have disco:summaryStatisticType re-
lationships to skos:Concepts which must be members of the controlled vocab-
ulary ddicv:SummaryStatisticType.

According to constraints of the type negative property constraints, in-
stances of a specific class C must not have certain object (R-52 ) or data
properties (R-53 ) pi (1 ¤ i ¤ n). Books, for instance, cannot have an ISSN.

A constraint of the constraint type value restrictions (R-88) consists of an
object or data property p and an individual i or a literal l, and restricts that
all individuals of a given class C are connected by p to i respectively l. Books
on computer science, e.g., must have the topic Computer-Science.

5.2.5 Constraints on RDF Literals

Constraints on RDF literals are not that significant in the Linked Data
community, but they are very important in communities like the library do-
main. Constraints of the constraint type literal pattern matching (R-44 ) en-
sure that individuals of a given class C can only have relations via a specific
data property p to literals of a specific datatype DT that match a certain
literal pattern. A constraint of this type is used to validate whether all literals
of a given data property within the context of a particular class match a given
regular expression which must be a valid pattern argument for the SPARQL
REGEX function. The subsequent in OWL expressed literal pattern match-
ing constraint ensures that books can only have valid ISBN identifiers, i.e.,
strings that match a given regular expression:

1 :ISBN a RDFS:Datatype ; owl:equivalentClass [ a RDFS:Datatype ;
2 owl:onDatatype xsd:string ;
3 owl:withRestrictions ([ xsd:pattern "^\d{9}[\d|X]$" ])] .
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The first OWL 2 axiom explicitly declares ISBN to be a datatype. The
second OWL 2 axiom defines ISBN as an abbreviation for a restriction on
the datatype xsd:string. The datatype ISBN can be used just like any other
datatype like in a universal quantification which ensures that all literals, to
which the data property isbn is pointing from books, must satisfy the literal
pattern matching constraint.

Constraints of the constraint type literal ranges (R-45) make sure that for
C individuals the literal values of a data property p of a certain datatype are
within the literal range [Vmin,Vmax]. The latitude of a spatial feature has to be
within the literal range of [-90,90] is a typical example constraint. Constraints
of the type negative literal ranges (R-142), in contrast, are used to ensure
that for individuals of a given class C, the literal values of a particular data
property p of a given datatype are outside a specific literal range [Vmin,Vmax].
The longitude of a spatial feature, e.g., must not be within [181,360].

Literal value comparison (R-43) constraints ensure that, depending on the
datatype of data properties, two different literals of the data properties p1 and
p2 have a specific ordering with respect to an operator like ¡, ¥,  , ¤, =, and
�. It has to be guaranteed, e.g., that birth dates of persons are before (<)
death dates. If the birth and the death date of Albert-Einstein are interchanged
(birthDate(Albert-Einstein, "1955-04-18"), deathDate(Albert-Einstein,

"1879-03-14")), a violation is thrown.
For particular data properties p within the context of given classes C,

values have to be stated for predefined languages. There must be an English
variable name (skos:notation) for each disco:Variable is an example of a con-
straint of the type language tag matching (R-47). Another constraint of this
type restricts that there must exist a value of the data property germanLabel
with a German language tag. The scope of the constraint includes all instances
of the class Country. For each country, the constraint verifies that the data
property, indicating its German label, points to at least one literal with a
German language code:

1 SHACL and SPARQL:
2 :CountryShape
3 a sh:Shape ;
4 sh:scopeClass :Country ;
5 sh:constraint [
6 sh:message "Values of the data property ’germanLabel’ must be
7 literals with a German language tag!" ;
8 sh:sparql """
9 SELECT $this ($this AS ?subject) (:germanLabel AS ?predicate)

10 (?value AS ?object)
11 WHERE {
12 $this :germanLabel ?value .
13 FILTER (!isLiteral(?value) || !langMatches(lang(?value), "de"))
14 } """ ; ] .

Constraints of the type value is valid for datatype (R-223) enable to make
sure that for C individuals, each literal of a property p is valid for its datatype
DT . It has to be ensured, e.g., that each literal of a certain property is actually
a date value, numeric, a string, or an integer which is allowed to be negative
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or not. By means of this constraint type, it can be checked if all literal values
of all properties of the datatype xsd:date which are used within the context of
DDI-RDF (e.g., disco:startDate, disco:endDate, and dcterms:date) are really
of the datatype xsd:date. It can also be enforced that stated numbers of pages
of publications must be integer values which must not be negative.

5.3 Conclusion

Our work is supposed to lay the ground for subsequent activities in the working
groups on RDF validation. We propose to relate existing solutions to case stud-
ies and use cases by means of requirements. We therefore collected the find-
ings of the RDF Validation Workshop and the working groups and initiated
a community-driven database of requirements to formulate constraints and
validate RDF data. Additionally, we added requirements from other sources,
particularly in the form of constraint types that are supported by existing
approaches, e.g., those expressible in OWL 2. The intention of this database
is to collaboratively collect case studies provided by various data institutions,
use cases, requirements, and solutions in a comprehensive and structured way.
The database is publicly available at http://purl.org/net/rdf-validation, con-
tinuously extended, and open for further contributions.

Laying the ground on case studies, cooperatively collected from various
data practitioners, and relating solutions to case studies and use cases by
means of requirements, makes sure that (1) commonly approved requirements
cover real world needs of data professionals having RDF validation related
problems and (2) the further development of constraint languages is based
on universally accepted requirements. By linking the requirements to existing
constraint languages and validation systems, we could identify strengths and
weaknesses, commonalities and differences not only intellectually, but based
on reliable data.

By today, we have published 81 types of constraints that are required by
various stakeholders for data applications and which form the basis of this
thesis. Each constraint type, from which concrete constraints are instanti-
ated to be checked on the data, corresponds to a specific requirement in the
database. We used this set of constraint types to gain a better understanding
of the expressiveness of existing and currently developed solutions. As none of
the solutions, we consider being high-level constraint languages, satisfies all
requirements raised by data practitioners, different languages should be used
to cover different sets of requirements.

Gaps regarding requirements should be easier to close within existing so-
lutions. This would lead to a harmonization of existing solutions regarding
their expressivity and enable translations in-between or towards a general
constraint language, e.g., the translation of well-readable constraints in any
language to executable SPARQL queries. The latter is especially promising
in view of the fact that SPARQL is able to fulfill all requirements and is

http://purl.org/net/rdf-validation
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considered by many as a practical solution to validate RDF data. SPARQL
and SPIN, a means to represent SPARQL in RDF, are powerful and widely
used for constraint formulation and RDF data validation. We see them as low-
level implementation languages, in contrast to high-level constraint languages
where specific language constructs exist to define constraints in a declarative
and in comparison more intuitive and concise way. We further see that OWL
2 is currently the most expressive high-level constraint language, at least ac-
cording to the pure number of constraint types supported.
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Consistent Validation across RDF-based
Constraint Languages

In a heterogeneous environment like the Web, there is not necessarily a one-
size-fits-all solution, especially as existing solutions should rather be inte-
grated than replaced, not least to avoid long and fruitless discussions about
the “best” approach. For constraint formulation and RDF data validation,
several languages exist or are currently developed. Shape Expressions (ShEx)
[287], Resource Shapes (ReSh) [274], Description Set Profiles (DSP) [234],
the Web Ontology Language (OWL) [27], the SPARQL Inferencing Notation
(SPIN) [185], and the SPARQL Query Language for RDF [134] are the six
most promising and widely used constraint languages that are most popular
among data practitioners.

With its direct support of validation via SPARQL, SPIN is very popular
and certainly plays an important role for future developments in this field.
Despite the fact that OWL is arguably not a constraint language, it is widely
used in practice as such under the closed-world and unique name assump-
tions. In addition, the W3C currently develops the Shapes Constraint Lan-
guage (SHACL) [186], an RDF vocabulary for describing RDF graph struc-
tures.

Yet, there is no clear favorite and none of the languages is able to meet
all requirements raised by data practitioners, i.e., enables to express each of
the 81 identified constraint types. This is the reason why further research
on the development of constraint languages is needed. As constraints of dif-
ferent types can be expressed with different languages, we propose to base
the selection of an appropriate constraint language on the requirements to be
satisfied.

SPARQL is generally seen as the method of choice to validate RDF data
according to certain constraints [115]. This statement is confirmed by the
facts that (1) the participants of the W3C RDF Validation Workshop1 [202]
as well as the members of the DCMI and the W3C working groups agree that
SPARQL should be the language to actually execute constraint validation on

1 http://www.w3.org/2013/09/10-rdfval-minutes
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RDF data and (2) constraint validation systems such as SPIN, Stardog ICV,2

Pellet ICV,3 and DQTP [192] check constraints with SPARQL as execution
language. We claim and provide evidence from literature that constraints of
each type expressed in any RDF-based constraint language can be checked by
means of the low-level implementation language SPARQL.

SPARQL and SPIN, a means to represent SPARQL in RDF, are very
powerful and widely used languages for constraint formulation and RDF data
validation [115]. However, constraints formulated in form of SPARQL queries
are not as intuitive and understandable as one wishes them to be. Consider the
following example of a simple constraint of the type allowed values (R-30/37)
stating that books on the topic computer science can only have ”Computer
Science”, ”Informatics”, and ”Information Technology” as subjects:

1 SPARQL:
2 SELECT ?subject ?predicate ?literal
3 WHERE {
4 ?subject rdf:type ?subC .
5 ?subC rdfs:subClassOf* :Computer-Science-Book .
6 ?subject ?subOP ?literal .
7 FILTER ( ?predicate = ?subOP )
8 ?subOP rdfs:subPropertyOf* :subject .
9 FILTER ( ?literal != "Computer Science" )

10 FILTER ( ?literal != "Informatics" )
11 FILTER ( ?literal != "Information Technology" ) }

This rather complex SPARQL query checks the constraint on RDF data
and returns violating triples. Yet, the constraint can be formulated much
shorter and in a more declarative and intuitive way using OWL 2 axioms,
when treating them as constraints, in Functional-Style [27] or RDF 1.1 Turtle
syntax [262]:

1 OWL 2 (Functional-Style):
2 DataPropertyRange( :subject :Computer-Science-Book-Subjects )
3 DatatypeDefinition( :Computer-Science-Book-Subjects
4 DataOneOf( "Computer Science" "Informatics" "Information Technology" ) )
5

6 OWL 2 (Turtle):
7 :subject rdfs:range :Computer-Science-Book-Subjects .
8 :Computer-Science-Book-Subjects owl:equivalentClass [ a rdfs:Datatype;
9 owl:oneOf ( "Computer Science" "Informatics" "Information Technology" ) ] .

OWL offers very powerful knowledge representation and reasoning ser-
vices. The main purpose of OWL is to infer new knowledge from existing
schemata and data (reasoning) rather than to check data for inconsistencies.
The fact that validation is not the primary purpose of its design has led to
claims that OWL cannot be used for validating RDF data.

In practice, however, many people are familiar with OWL and its concise
human-understandable concrete syntax Turtle, OWL is well-spread, and RDF-
S/OWL constructs are widely used to tell people and applications about how

2 http://docs.stardog.com/# validating constraints
3 http://clarkparsia.com/pellet/icv

http://docs.stardog.com/#_validating_constraints
http://clarkparsia.com/pellet/icv
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valid instances should look like. In general, RDF documents follow the syn-
tactic structure and the intended semantics of RDFS/OWL ontologies which
could therefore not only be used for reasoning but also for validation. Conse-
quently, OWL can be used (1) to describe RDF data, (2) to infer new knowl-
edge out of explicitly stated knowledge, and (3) to validate RDF data against
the same expressive OWL axioms when using them in terms of constraints
under the closed-world and unique name assumptions (see Chapter 2.4).

With DSP, ReSh, and SHACL, exactly the same constraint of the type
allowed values can also be expressed more intuitively and concisely than with
plain SPARQL:

1 DSP:
2 [ dsp:resourceClass :Computer-Science-Book ;
3 dsp:statementTemplate [
4 dsp:property :subject ;
5 dsp:literalConstraint [
6 dsp:literal "Computer Science" , "Informatics" , "Information Technology" ] ] ] .
7

8 ReSh:
9 :Computer-Science-Book a oslc:ResourceShape ;

10 oslc:property [ oslc:propertyDefinition :subject ;
11 oslc:allowedValues [ oslc:allowedValue
12 "Computer Science" , "Informatics" , "Information Technology" ] ] .
13

14 SHACL:
15 :Computer-Science-Book-Shape
16 a sh:Shape ;
17 sh:scopeClass :Computer-Science-Book ;
18 sh:property [
19 sh:predicate :subject ;
20 sh:allowedValues
21 ( "Computer Science" "Informatics" "Information Technology" ) ; ] .

And similarly, but even shorter, the identical constraint represented by
ShEx:

1 ShEx:
2 :Computer-Science-Book {
3 :subject ( "Computer Science" "Informatics" "Information Technology" ) }

Compared to SPARQL, high-level constraint languages like OWL, DSP,
ShEx, ReSh, and SHACL are easy to understand and enable to formulate
constraints more tersely, but either lack an implementation to actually validate
RDF data according to constraints expressed in these languages or are based
on different implementations.

This leaves the question how to execute RDF-based constraint languages
on RDF data in a consistent way, i.e., how to consistently implement the vali-
dation of RDF data against constraints of any constraint type expressed in any
RDF-based language. This is necessary since (1) different implementations us-
ing different underlying technologies hamper the interoperability of constraint
languages and (2) full and differing implementations of several languages are
hard to maintain for solution providers.

We propose to use SPARQL as low-level implementation language: con-
straint types are transformed into SPARQL queries executable to validate
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RDF data against constraints instantiated from these constraint types. We
use SPIN, a SPARQL-based way to formulate and check constraints, as basic
validation framework and present a general approach how RDF-based con-
straint languages can be executed on RDF data in a consistent way using
SPARQL as an intermediate language. The only limitations are that (1) con-
straints and constraint language constructs must be representable in RDF and
(2) constraint languages and supported constraint types must be expressible
in SPARQL.

We claim that RDF data can be validated on constraints of each type
expressed in any RDF-based language using SPARQL as low-level execution
language. This claim is supported by the subsequent facts: [286] showed that
constraints can be translated into non-recursive Datalog programs for val-
idation, while [5] proved that SPARQL has the same expressive power as
non-recursive Datalog programs. Therefore, data validation can be reduced
to SPARQL query answering and SPARQL queries can be executed to vali-
date RDF data against constraints of any type represented in any RDF-based
language which has to be expressible in SPARQL.

Datalog [77, 157] is a declarative logic programming language that is often
used as a query language for deductive databases [116, 281]. Syntactically,
Datalog is a subset of Prolog, a high-level programming language based on
formal logic and devised for artificial intelligence applications [36, 98, 237].

To demonstrate the general applicability of the approach, we completely
implemented the validation of RDF data against all OWL 2 and DSP lan-
guage constructs by mapping each of them to SPIN. Furthermore, we provide
implementations for all constraint types that are expressible in OWL 2 and
DSP as well as for major constraint types representable by ReSh and ShEx.4

In addition, we have developed a validation environment,5 online available
at http://purl.org/net/rdfval-demo, to be used to validate RDF data accord-
ing to constraints of any type expressed in arbitrary RDF-based constraint
languages.

In the remainder of the chapter, we first delineate the suggested general
approach providing consistent implementations for any RDF-based constraint
language (see Section 6.1). In Section 6.2, we introduce DSP as a language
used within the DCMI community to define constraints on RDF data. Sub-
sequently, we describe in detail how we have implemented the constraint lan-
guages DSP and OWL 2 within our SPIN validation environment (see Sec-
tion 6.3).

6.1 Validation Environment

The overall idea is that we see constraint languages as domain-specific lan-
guages, hence domain-specific constraint languages (DSCL), that are trans-

4 Implementations of constraint languages on GitHub
5 Source code on GitHub

http://purl.org/net/rdfval-demo


6.1 Validation Environment 147

lated into SPARQL and executed on RDF data within our validation envi-
ronment we based on SPIN. Language designers are shifting attention from
general purpose languages to domain-specific languages. General-purpose lan-
guages like Java and C++ for programming have been the primary focus of
language research for a long time. The idea was to create only one language
that is better suited for programming than any other language [295].

A domain-specific language [112] is a small, usually declarative language,
tailored to a particular kind of problem [264] and offering substantial gains in
expressiveness and ease of use compared with general purpose languages for
the domain in question [217]. Instead of aiming to be the best for solving any
kind of computing problem, domain-specific languages aim to be particularly
good for solving a specific class of problems, and in doing so they are often
much more accessible to the general public than traditional general-purpose
languages .

The translation of a DSCL into SPARQL queries is done once, for instance,
by the designer of the DSCL, and provided in form of a SPIN mapping plus op-
tional pre-processing instructions. From a user’s perspective, all that is needed
is a representation of constraints in the DSCL and some data to be validated
against these constraints. All these resources are purely declarative and pro-
vided in RDF or as SPARQL queries. The actual execution of the validation
process is trivial using SPIN and illustrated in Figure 6.1.

Fig. 6.1. Validation Process

First, an RDF graph has to be populated as follows:

1. The data is loaded that is to be validated,
2. the constraints in the DSCL are loaded,
3. the SPIN mapping is loaded that contains the SPARQL representation of

the DSCL (see Section 6.3 for a detailed explanation), and
4. the pre-processing is performed, which can be provided in form of SPARQL

CONSTRUCT queries.
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When the input RDF graph is ready, the SPIN engine checks for each
resource if it satisfies all constraints whose constraint types are associated
with the classes assigned to the resource, and generates a result RDF graph
containing information about all constraint violations. With this framework,
we have all we need to implement our own DSCL.

With this implementation, there are two obvious limitations of our ap-
proach: (1) constraints and constraint language constructs must be repre-
sentable in RDF and (2) constraint languages must be expressible in SPARQL,
i.e., the actual checking of constraints of each type the language supports must
be expressible in form of a SPARQL query. For OWL 2, DSP, ShEx, ReSh,
and SHACL, this is the case, but in the future, non-RDF based languages are
expected to be supported as well.

6.1.1 Connect SPIN to your Data

A SPIN mapping consists of multiple SPIN construct templates - each of
them containing a SPARQL query executable to validate RDF data against
constraints of a particular type. These templates are linked to the generic
class ToValidate whose instances are validated on constraints of a certain
type expressed in the DSCL for which the mapping is defined:

1 :ToValidate
2 spin:constraint
3 [ a dsp2spin:StatementTemplates_MinimumOccurrenceConstraint ] .

As the mapping is designed to be independent of any concrete data, the
class ToValidate is purely generic. Instead of using such a generic class, it is
also possible to link a template, responsible to check constraints of a given
type, to the classes owl:Thing or rdfs:Resource to achieve that all instances
of the input RDF graph are validated on constraints of that type.

Neither of these classes has to be assigned manually and explicitly to
instances within the data to be validated. They are either implicitly inferred by
means of reasoning or explicitly assigned during the pre-processing step, both
in an automatic way. A reasonable approach would be to specify ToValidate as
super-class of all classes whose instances should actually be validated against
constraints (in the case of DSP: classes that are linked via dsp:resourceClass

to a description template); this can be accomplished by a suitable SPARQL
CONSTRUCT query that is executed before the validation starts. After pre-
processing, the data might look like in the following code snippet – with the
added assignment to the generic class in italics:

1 :Description-Logic-Handbook
2 a :Computer-Science-Book , :ToValidate ;
3 :subject "Computer Science" .
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6.1.2 Mapping from a DSCL to SPIN

The mapping from a DSCL to SPIN is performed by creating SPIN construct
templates - one for each constraint type that is supported by the DSCL, so
for the constraint type minimum unqualified cardinality restrictions (R-81)
expressible in DSP:

1 dsp2spin:StatementTemplates_MinimumOccurrenceConstraint
2 a spin:ConstructTemplate ;
3 spin:body [
4 a sp:Construct ;
5 sp:templates (...) ;
6 sp:where (...) ] .

Representing Validation Results as Constraint Violations in RDF

This is the general structure of a SPIN construct template representing a
SPARQL CONSTRUCT query in RDF. We use SPARQL CONSTRUCT
queries to generate descriptions for each detected constraint violation:

1 CONSTRUCT {
2 _:constraintViolation
3 a spin:ConstraintViolation ;
4 spin:violationRoot ?subject ;
5 rdfs:label ?violationMessage ;
6 spin:violationSource ?violationSource ;
7 :severityLevel ?severityLevel ;
8 spin:violationPath ?violationPath ;
9 spin:fix ?violationFix }

In SPIN, the CONSTRUCT part of a SPARQL CONSTRUCT query is rep-
resented in RDF as follows:

1 a sp:Construct ;
2 sp:templates (
3 [ sp:subject _:constraintViolation ;
4 sp:predicate rdf:type ;
5 sp:object spin:ConstraintViolation ]
6 [ sp:subject _:constraintViolation ;
7 sp:predicate rdfs:label ;
8 sp:object [ sp:varName "violationMessage" ] ] ... ) ;

Representing constraint violations and therefore validation results in RDF
enables to process them further by means of Semantic Web technologies. SPIN
construct templates generate constraint violation triples indicating the sub-
jects, the properties, and the constraints causing the violations and the reasons
why violations have been raised.

A SPIN construct template creates constraint violation triples if all triple
patterns within the SPARQL WHERE clause of the SPARQL CONSTRUCT
query match. If we specify the existential quantification that a book must
have at least one author and if the book The-Hound-Of-The-Baskervilles has
no author relationship, all the triple patterns within the SPARQL WHERE
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clause match and the SPIN construct template for checking constraints of the
type existential quantifications (R-86) generates a violation triple.

Constraint violations (spin:constraintViolation) should provide useful mes-
sages (rdfs:label) explaining the reasons why the data did not satisfy the con-
straint in order to assist data debugging and repair. In addition, constraint vio-
lation triples contain references to the subjects (spin:violationRoot), the prop-
erties (spin:violationPath), and the constraints (spin:violationSource) causing
the violations. In the example, the subject The-Hound-Of-The-Baskervilles,
the property author, and the existential quantification caused the violation.

Constraint violation triples may be linked to useful messages explaining
how to overcome raised violations. To fix constraint violations (spin:fix ), we
may give some guidance how to become valid data either by adding, modifying,
or deleting triples. To indicate how severe the violation of a constraint is,
we introduce a new property to classify constraints according to different
levels of severity (severityLevel) like informational, warning, and error. It is
also important to find not validated triples, i.e., triples which have not been
validated against any constraint, as it may be enforced that every triple of
the input graph has to be validated.

Representing Constraint Checks in RDF

One of the main benefits of SPIN is that arbitrary SPARQL queries and thus
constraint checks are representable as RDF triples. SPIN provides a vocabu-
lary, the SPIN SPARQL Syntax, to model SPARQL queries in RDF [184]. An
RDF representation of constraint checks enables that (1) they can be consis-
tently stored together with ontologies, constraints, and the data, (2) they can
easily be shared on the Web of Data, (3) they can directly be processed by a
plethora of already existing RDF tools, (4) they are linkable to constraints and
RDF data, and (5) the validation of RDF data can automatically be executed
by SPARQL execution engines.

As for the CONSTRUCT part of the SPARQL CONSTRUCT query, SPIN
also represents the WHERE clause in RDF, i.e., the actual check if constraints
of a given type hold for the data. The subsequent code snippet demonstrates
how SPIN represents SPARQL 1.1 NOT EXISTS [134] filter expressions in
RDF (FILTER NOT EXISTS { ?book author ?person }) using the RDF Turtle
syntax:

1 [ a sp:Filter ;
2 sp:expression [
3 a sp:notExists ;
4 sp:elements (
5 [ sp:subject [ sp:varName "book" ] ;
6 sp:predicate :author ;
7 sp:object [ sp:varName "person" ] ] ) ] ] )

As the mapping of a DSCL to SPIN is defined for all constraint types
supported by the DSCL and hence independently of concrete constraints,
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constraints of all these types are generally checked for each instance of the
generic class ToValidate. Therefore, the WHERE clause of a template always
has to be restricted to classes for which concrete constraints are actually
defined - in the case of DSP, the resource classes substituting the SPARQL
variable ?resourceClass:

1 WHERE { ?subject rdf:type ?resourceClass . }

6.2 DSP as Domain-Specific Constraint Language

Of course, it can be argued if DSP is the best possible way to represent con-
straints. DSP, however, is familiar to the DCMI community and tailored to
the DCMI Abstract Model and the Singapore Framework for Dublin Core
Application Profiles [235] comprising descriptive components that are neces-
sary or useful for documenting application profiles. A Dublin Core Application
Profile [86] defines metadata records which meet specific application needs. In
an application profile, more than one constraint language can be used, with
DSP being one of them.

A Description Set Profile (DSP) [234] is a DSCL to formally specify struc-
tural constraints on sets of resource descriptions within an RDF application
profile. DSP restricts resources that may be described by descriptions in a de-
scription set, the properties that may be used, and the values the properties
may point to.

6.2.1 Conceptual Model and RDF Mapping

The DCMI Abstract Model [258] with its Description Set Model (DSM)
(see Figure 6.2) is the underlying conceptual model of Dublin Core metadata
on which constraints in DSP are validated. While the DSM is highly related
to RDF, it differs in some aspects. Table 6.1 shows how instances of DSM
concepts are mapped to RDF. The mapping is based on DC-RDF [236], the
recommendation how Dublin Core metadata is represented in RDF by means
of the abstract syntax of the RDF model.

In the next two subsections, we delineate the concepts and their relations
defined within the conceptual model of DSP and demonstrate in form of con-
crete, representative examples how these concepts and their interconnections
are used to define constraints in DSP.

6.2.2 Constraining Resources, Properties, and Non-Literal Values

With DSP, constraints on resources can be defined within an applica-
tion profile, i.e., constraints expressed in DSP enforce how valid descrip-
tions of resources in a description set should look like. A DSP consists of
a set of dsp:DescriptionTemplates that put constraints on classes denoted
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Fig. 6.2. Description Set Model (DSM)
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Table 6.1. RDF Representation of Instances of DSM Concepts

DSM RDF

record -
description set graph

(containing description graphs)
description graph describing a resource
resource URI or blank node,

root of description graph
statement subject: resource

predicate: property
object: value (surrogate)
(non-literal value (surrogate) or
literal value (surrogate))

non-literal value (surrogate) URI or blank node
vocabulary encoding scheme subject: non-literal value (surrogate), skos:Concept

predicate: dcam:memberOf, skos.inScheme
object: skos:ConceptScheme

value string subject: non-literal value (surrogate)
predicate: rdf:value
object: literal
(plain literal or typed literal)

literal value (surrogate) literal
(plain literal or typed literal)

value string language language tag of literal
syntax encoding scheme datatype of typed literal

by dsp:resourceClass. Constraints can either be associated with (1) the de-
scription of resources itself defined within dsp:DescriptionTemplates, e.g., the
minimum occurrence of resource class instances in the input graph, (2) single
properties defined within dsp:StatementTemplates, (3) non-literal values de-
fined within dsp:NonLiteralStatementTemplates, and (4) literal values defined
within dsp:LiteralStatementTemplates. Consider the succeeding constraints on
resources, properties, and non-literal values - instantiated from the complete
set of 23 DSP constraint types (see [234] for definitions, descriptions, and
examples for each DSP constraint type):

1 :computer-science-book-description-template
2 a dsp:DescriptionTemplate ;
3 dsp:standalone true ;
4 dsp:minOccur 1 ;
5 dsp:maxOccur "infinity" ;
6 dsp:resourceClass :Computer-Science-Book ;
7 dsp:statementTemplate [
8 a dsp:NonLiteralStatementTemplate ;
9 dsp:minOccur 1 ;

10 dsp:maxOccur 5 ;
11 dsp:property :subject ;
12 dsp:subPropertyOf dcterms:subject ;
13 dsp:nonLiteralConstraint [
14 a dsp:NonLiteralConstraint ;
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15 dsp:descriptionTemplate
16 :computer-science-book-subjects-description-template ;
17 dsp:valueClass skos:Concept ;
18 dsp:valueURIOccurrence "mandatory"^^dsp:occurrence ;
19 dsp:valueURI :Computer-Science, :Informatics, :Information-Technology ;
20 dsp:vocabularyEncodingSchemeOccurrence "mandatory"^^dsp:occurrence ;
21 dsp:vocabularyEncodingScheme :Computer-Science-Book-Subjects ;
22 dsp:valueStringConstraint [
23 a dsp:ValueStringConstraint ;
24 dsp:minOccur 1 ;
25 dsp:maxOccur 1 ;
26 dsp:literal "Computer Science"@en , "Computer Science" ;
27 dsp:literal "Informatics"@en , "Informatics" ;
28 dsp:literal "Information Technology"en , "Information Technology" ;
29 dsp:languageOccurrence "optional"^^dsp:occurrence ;
30 dsp:language "en"^^xsd:language ;
31 dsp:syntaxEncodingSchemeOccurrence "optional"^^dsp:occurrence ;
32 dsp:syntaxEncodingScheme xsd:string ] ] ] .

The description template computer-science-book-description-template de-
scribes resources of the type Computer-Science-Book (dsp:recourceClass).
Computer-Science-Book resources are allowed to occur standalone (dsp:stand
alone), i.e., without being the value of a property. Books on computer sci-
ence must occur at least once (dsp:minOccur) and may appear multiple times
(dsp:maxOccur) in the input graph.

The DSP construct dsp:NonLiteralStatementTemplate is used to spec-
ify constraints on object properties with a particular resource class as do-
main. The dsp:NonLiteralStatementTemplate in the example restricts com-
puter science books to have at least one (dsp:minOccur) and at most five
(dsp:maxOccur) subject (dsp:property) relationships to non-literal values which
are further restricted in the dsp:NonLiteralConstraint. Sub-property relation-
ships may be enforced by dsp:subPropertyOf : if a computer science book is
connected via subject to a particular topic, then this book must also be related
to that topic via super-property dcterms:subject.

Non-literal values, to which the property subject is pointing, have to
be of the class skos:Concept (dsp:valueClass) and are further described in
a dedicated description template (referenced by dsp:descriptionTemplate).
A URI must be given (dsp:valueURIOccurrence mandatory) for non-literal
values, whereas allowed URIs (dsp:valueURI ) are Computer-Science, Infor-
matics, and Information-Technology. Controlled vocabularies like Computer-
Science-Book-Subjects are represented as skos:ConceptSchemes in RDF and
as dsp:VocabularyEncodingSchemes in DSM. If vocabulary encoding schemes
must be stated (dsp:vocabularyEncodingSchemeOccurrence mandatory), they
must contain the non-literal values specified within the description tem-
plate. In this case, non-literal values are assigned to the class skos:Concept
and related to the skos:ConceptScheme Computer-Science-Book-Subjects via
the object properties skos:inScheme and dcam:memberOf. The book Design-
Patterns satisfies all constraints defined for resources of the type Computer-
Science-Book :

1 :Design-Patterns
2 a :Computer-Science-Book ;
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3 :subject :Computer-Science .
4 :Computer-Science
5 a skos:Concept ;
6 dcam:memberOf :Computer-Science-Book-Subjects ;
7 skos:inScheme :Computer-Science-Book-Subjects ;
8 rdf:value "Computer Science" .
9 :Computer-Science-Book-Subjects

10 a skos:ConceptScheme .

6.2.3 Constraining Literal Values

There are five DSP constraint types on value strings, i.e., human-readable
labels of non-literal values (rdf:value), that can also be used for restricting
literal values, as can be seen in the subsequent DSP constraints:

1 :computer-science-book-description-template
2 a dsp:DescriptionTemplate ;
3 dsp:standalone true ;
4 dsp:minOccur 1 ;
5 dsp:maxOccur "infinity" ;
6 dsp:resourceClass :Computer-Science-Book ;
7 dsp:statementTemplate [
8 a dsp:LiteralStatementTemplate ;
9 dsp:minOccur 1 ;

10 dsp:maxOccur 5 ;
11 dsp:property :subject ;
12 dsp:literalConstraint [
13 a dsp:LiteralConstraint ;
14 dsp:literal "Computer Science"@en , "Computer Science" ;
15 dsp:literal "Informatics"@en , "Informatics" ;
16 dsp:literal "Information Technology"en , "Information Technology" ;
17 dsp:languageOccurrence "optional"^^dsp:occurrence ;
18 dsp:language "en"^^xsd:language ;
19 dsp:syntaxEncodingSchemeOccurrence "optional"^^dsp:occurrence ;
20 dsp:syntaxEncodingScheme xsd:string ] ] ] .

Within a dsp:LiteralStatementTemplate, constraints on data properties
and allowed literal values for these data properties can be specified. In case
the property subject points to literals, literal values can only be ”Computer
Science”, ”Informatics” and ”Information Technology” (dsp:literal). For lit-
eral values of the property subject, the language tag en (dsp:language) and the
datatype xsd:string (dsp:syntaxEncodingScheme) may be stated in the data,
since dsp:languageOccurrence and dsp:syntaxEncodingSchemeOccurrence are
set as optional. Introduction-To-Algorithms is a book on computer science
fulfilling these constraints on literal values defined for resources of the type
Computer-Science-Book and the data property subject :

1 :Introduction-To-Algorithms
2 a :Computer-Science-Book ;
3 :subject "Computer Science" .
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6.3 Mapping of DSCLs to SPIN

After the introduction of the general approach providing consistent imple-
mentations for any RDF-based DSCL in Section 6.1, we now present concrete
and intuitive examples of mappings from DSCL constructs to SPIN to offer
implementations of these constructs. To demonstrate the general applicabil-
ity of the approach, we created SPIN mappings for (1) all OWL 2 and DSP
language constructs, (2) all of the 81 constraint types expressible by OWL 2
and DSP, and (3) major constraint types representable by ReSh and ShEx.

In the first example, we map the DSP constraint type Statement Tem-
plates - Minimum Occurrence Constraint (6.1) [234] to SPIN. This DSP con-
straint type is used to enforce the minimum number of relationships instances
of given resource classes must have via given properties and corresponds to
the minimum unqualified cardinality restrictions (R-81) constraint type. The
DSP constraint type is implemented by the following SPARQL query which
is then represented in SPIN-RDF and linked to the generic class ToValidate
to ensure that all individuals of the input graph are actually validated against
constraints of this type:

1 CONSTRUCT {
2 _:constraintViolation
3 a spin:ConstraintViolation ;
4 spin:violationRoot ?subject ;
5 rdfs:label ?violationMessage ;
6 spin:violationSource "DSP constraint type: Minimum Occurrence Constraint" ;
7 :severityLevel :error ;
8 spin:violationPath ?property ;
9 spin:fix ?violationFix }

10 WHERE {
11 # detect DSP constraint type:
12 ?descriptionTemplate
13 dsp:resourceClass ?resourceClass .
14 dsp:statementTemplate ?statementTemplate .
15 ?statementTemplate
16 dsp:minOccur ?minimumCardinality .
17 dsp:property ?property .
18

19 # relate DSP constraint to data:
20 ?subject a ?resourceClass .
21

22 # check constraint:
23 BIND ( ( spl:objectCount ( ?subject, ?property ) ) AS ?cardinality ) .
24 FILTER ( cardinality < ?minimumCardinality ) .
25

26 # create string variables for validation results:
27 BIND ( CONCAT (
28 "Cardinality of ’", ?property, "’ ( ", ?cardinality, " ) < ",
29 "mininum cardinality of ’", ?property, "’ ( ", ?minimumCardinality, " )" )
30 AS ?violationMessage ) .
31 BIND ( op:numeric-subtract( ?minimumCardinality, ?cardinality )
32 AS ?cardinalityDifference ) .
33 BIND ( CONCAT (
34 "Add ", ?cardinalityDifference, " ’", ?property,
35 "’ relationship(s) for ’", ?subject, "’" )
36 AS ?violationFix ) . }
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It can be seen that the WHERE clause of the SPARQL CONSTRUCT
query is used to detect constraint violations. First, the matching of appropriate
triple patterns detects the actual DSP constraint type of a concrete constraint
in DSP (lines 12-17). Second, the instance data is related to the constraint
of the identified type (line 20), i.e., it is checked if the class of the currently
validated RDF subject (?subject) of the input graph corresponds to the re-
source class (?resourceClass) as stated in the constraint. Third, it is checked
if the constraint holds for the subject (lines 23-24): the SPARQL filter expres-
sion identifies only instances that violate the constraint. If the constraint does
not hold, all triple patterns within the WHERE clause match, some string
variables are filled as these are part of the validation results (line 27-36), and
constraint violation triples are generated within the CONSTRUCT section of
the SPARQL CONSTRUCT query (lines 1-9).

The example constraint creates a violation message (?violationMessage)
that can be displayed to the user to explain the reason why the individ-
ual subject did not satisfy the constraint, together with a literal indicating
the violated constraint (spin:violationSource) and the URIs of the subject
(spin:violationRoot) and the properties (spin:violationPath) causing the vio-
lation. The property spin:fix is used to point to literals containing explanations
of how to overcome raised violations either by adding, modifying, or deleting
triples. To indicate that the language designer of DSP considers violations of
constraints of that type as severe, we assign (severityLevel) the severity level
error to the constraint.

In the following code snippet, we define a minimum unqualified cardinality
restriction in DSP to ensure that books on computer science have at least one
assigned topic (lines 2-5). As The-C-Programming-Language is a computer
science book without any associated subject (line 8), all triple patterns within
the WHERE clause match and the SPIN construct template generates an
adequate constraint violation triple (lines 11-18):

1 DSP constraint:
2 [ dsp:resourceClass :Computer-Science-Book ;
3 dsp:statementTemplate [
4 dsp:minOccur 1 ;
5 dsp:property :subject ] ] .
6

7 Invalid RDF data:
8 :The-C-Programming-Language a :Computer-Science-Book .
9

10 Constraint violation triple:
11 [ a spin:ConstraintViolation ;
12 spin:violationRoot :The-C-Programming-Language ;
13 rdfs:label
14 "Cardinality of ’subject’ ( 0 ) < minimum cardinality of ’subject’ ( 1 )" ;
15 spin:violationSource "DSP constraint type: Minimum Occurrence Constraint" ;
16 :severityLevel :error ;
17 spin:violationPath :subject ;
18 spin:fix "Add 1 ’subject’ relationship(s) for ’The-C-Programming-Language’" ] .

This example demonstrates how a DSP constraint type is implemented in
form of a SPARQL query within our SPIN validation framework. In the same
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way, most other constraint types can be implemented as well, although the
mapping often gets substantially longer and more complex. There are, how-
ever, constraint types that cannot be implemented at all, like the DSP con-
straint type Literal Value Constraints - Syntax Encoding Scheme Constraint
(6.5.4) [234] which is used to determine whether syntax encoding schemes,
i.e., RDF datatypes, are allowed to be stated for RDF literals.

This type of constraint cannot be implemented, since RDF literals always
have associated datatype IRIs. If there is no datatype IRI and no language tag
explicitly defined for an RDF literal, the datatype of the literal is by default
set to xsd:string. If a literal has an associated language tag but no explicitly
stated datatype, in contrast, the datatype is assumed to be rdf:langString.
Fortunately, this DSP constraint type can be replaced by the equivalent DSP
constraint type Literal Value Constraints - Syntax Encoding Scheme List Con-
straint (6.5.5) [234] which is used to determine the set of allowed syntax
encoding schemes for literals of given data properties and which we fully im-
plemented within the SPIN mapping for DSP.

We can specify an existential quantification in OWL 2 to make sure that
any publication has at least one publisher:

1 OWL 2:
2 :Publication rdfs:subClassOf
3 [ a owl:Restriction ;
4 owl:onProperty :publisher ;
5 owl:someValuesFrom :Publisher ] .

The next SPARQL query shows how we implemented the existential quan-
tifications (R-86 ) constraint type in SPIN when expressing constraints of that
type in OWL 2:

1 SPIN:
2 CONSTRUCT {
3 _:constraintViolation
4 a spin:ConstraintViolation ;
5 spin:violationRoot ?subject ;
6 rdfs:label ?violationMessage ;
7 spin:violationSource "OWL 2 Existential Quantifications" ;
8 :severityLevel :error ;
9 spin:violationPath ?OPE ;

10 spin:fix ?violationFix }
11 WHERE {
12 ?subject a ?subC . ?subC rdfs:subClassOf* ?C .
13 ?C a owl:Restriction ;
14 owl:onProperty ?OPE ;
15 owl:someValuesFrom ?CE .
16 FILTER ( sp:not ( spl:hasValueOfType ( ?subject, ?OPE, ?CE ) ) ).
17 BIND ( ( ... ) AS ?violationMessage ) .
18 BIND ( ( ... ) AS ?violationFix ) . }

6.4 Conclusion

With our approach, we were able to fully implement the validation of RDF
data against all OWL 2 and DSP language constructs. To demonstrate the
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general applicability of the approach, we provide implementations for all con-
straint types which are expressible in OWL 2 and DSP as well as for major
constraint types representable by ReSh and ShEx.

We use SPIN, a SPARQL-based way to formulate and check constraints, as
a basis to create a validation environment, in which any RDF-based high-level
constraint language like ShEx, ReSh, DSP, OWL, and SHACL can be imple-
mented in a consistent way by translating them into SPARQL and executing
them on RDF data.

We propose to use SPARQL as a low-level implementation language: con-
straint types are transformed into SPARQL queries executable to validate
RDF data against constraints instantiated from these constraint types. We
claim and provide evidence from literature that constraints of each type in
any RDF-based language can be checked with plain SPARQL as execution
language.

The translation of a constraint language into SPARQL queries is done once,
for instance, by the designer of the language, and provided in form of a SPIN
mapping. From a user’s perspective, all that is needed is a representation
of constraints in the language and some data to be validated against these
constraints. All these resources are purely declarative and provided in RDF
or as SPARQL queries.

The approach is particularly appealing as it has only one dependency
being SPIN. The implementation of a constraint language is fully declarative,
consisting of a SPIN mapping in RDF and pre-processing instructions in form
of SPARQL CONSTRUCT queries which are also represented in RDF using
SPIN.

We offer the developed validation environment, which is online available at
http://purl.org/net/rdfval-demo, to be used to validate RDF data according
to constraints of any constraint type expressed in arbitrary RDF-based lan-
guages. The SPIN engine checks for each resource if it satisfies all constraints,
which are associated with the classes the resource is assigned to, and generates
a result RDF graph containing information about all constraint violations.
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Validation Framework for RDF-based
Constraint Languages

The evaluation on the constraint type specific expressivity of the most com-
mon constraint languages revealed that none of the current solutions, we con-
sider as high-level constraint languages, satisfies all requirements on RDF val-
idation, i.e., enables to express constraints of all the 81 identified constraint
types (see introduction of Chapter 5)

In Chapter 6, we demonstrated that high-level RDF-based constraint lan-
guages can be implemented in a consistent way by mapping the languages to
SPIN using SPARQL CONSTRUCT queries. We offer a validation environ-
ment in which own mappings from existing and newly developed constraint
languages can be integrated and tested to validate RDF data according to
constraints of any type expressed in these languages.

The constraint type minimum qualified cardinality restrictions (R-75) can
be instantiated to formulate the concrete constraint that publications must
have at least one author which must be a person. Equivalent constraints of that
constraint type having exactly the same meaning are expressible in different
languages:

1 OWL 2: :Publication rdfs:subClassOf
2 [ a owl:Restriction ;
3 owl:minQualifiedCardinality 1 ;
4 owl:onProperty :author ;
5 owl:onClass :Person ] .
6

7 ShEx: :Publication { :author @:Person{1, } }
8

9 ReSh: :Publication a rs:ResourceShape ; rs:property [
10 rs:propertyDefinition :author ;
11 rs:valueShape :Person ;
12 rs:occurs rs:One-or-many ; ] .
13

14 DSP: [ dsp:resourceClass :Publication ; dsp:statementTemplate [
15 dsp:minOccur 1 ;
16 dsp:property :author ;
17 dsp:nonLiteralConstraint [ dsp:valueClass :Person ] ] ] .
18

19 SHACL: :PublicationShape
20 a sh:Shape ;
21 sh:scopeClass :Publication ;
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22 sh:property [
23 sh:predicate :author ;
24 sh:valueShape :PersonShape ;
25 sh:minCount 1 ; ] .
26 :PersonShape
27 a sh:Shape ;
28 sh:scopeClass :Person .
29

30 SPIN: CONSTRUCT { [ a spin:ConstraintViolation ... . ] } WHERE {
31 ?subject
32 a ?C1 ;
33 ?predicate ?object .
34 BIND ( qualifiedCardinality ( ?subject, ?predicate, ?C2 ) AS ?c ) .
35 BIND( STRDT ( STR ( ?c ), xsd:nonNegativeInteger ) AS ?cardinality ) .
36 FILTER ( ?cardinality < ?minimumCardinality ) .
37 FILTER ( ?minimumCardinality = 1 ) .
38 FILTER ( ?C1 = :Publication ) .
39 FILTER ( ?C2 = :Person ) .
40 FILTER ( ?predicate = :author ) . }
41

42 SPIN function qualifiedCardinality:
43 SELECT ( COUNT ( ?arg1 ) AS ?c ) WHERE { ?arg1 ?arg2 ?object . ?object a ?arg3 . }

Note that the SPIN representation of the constraint is not a SPIN mapping
to implement its constraint type, but a direct validation of data against the
constraint using a SPARQL CONSTRUCT query that creates a constraint
violation in case the constraint does not hold for the data.

When we fully implemented OWL 2 and DSP and major constructs of
other high-level constraint languages using SPARQL as intermediate language
and mappings to SPIN, we found that many mappings actually resemble each
other; particularly the mappings of the same constraint type in different lan-
guages, but also the mappings of different constraint types, though the latter
only on a very superficial, structural level. In the example, it can be seen
that the expressions of the high-level constraint languages are comparatively
similar - there seems to be a pattern, a common way to express this type of
constraints.

Creating mappings of constraint languages to SPIN to actually implement
their validation is in many cases not straight-forward and requires profound
knowledge of SPARQL, as the SPIN mappings for OWL 2 and DSP demon-
strate. In the next example, we show how the validation of the minimum
qualified cardinality restrictions constraint type is implemented for DSP:

1 CONSTRUCT {
2 _:constraintViolation
3 a spin:ConstraintViolation ;
4 spin:violationRoot ?subject ;
5 rdfs:label ?violationMessage ;
6 spin:violationSource ?violationSource ;
7 :severityLevel :error ;
8 spin:violationPath ?predicate ;
9 spin:fix ?violationFix }

10 WHERE {
11 ?subject a ?resourceClass .
12 ?descriptionTemplate
13 dsp:resourceClass ?resourceClass ;
14 dsp:statementTemplate ?statementTemplate .
15 ?statementTemplate
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16 dsp:minOccur ?minimumCardinality ;
17 dsp:property ?predicate ;
18 dsp:nonLiteralConstraint ?nonLiteralConstraint .
19 ?nonLiteralConstraint dsp:valueClass ?valueClass .
20 BIND ( qualifiedCardinality ( ?subject, ?predicate, ?valueClass ) AS ?cardinality ) .
21 FILTER ( ?cardinality < ?minimumCardinality ) .
22 BIND ( ( ... ) AS ?violationMessage ) .
23 BIND ( ( ... ) AS ?violationSource ) .
24 BIND ( ( ... ) AS ?violationFix ) . }

We build on the experience gained from mapping several constraint lan-
guages to SPIN and from the analysis of the identified constraint types to
create an intermediate layer, a framework that is able to describe the me-
chanics of all constraint types in a way that mappings from high-level con-
straint languages to this intermediate generic representation can be created
straight-forwardly. The basic idea of our framework is very simple: (1) we
aim at reducing the representation of constraints to the absolute minimum
that has to be provided in a mapping to SPIN and (2) we want to be able to
express constraints of any constraint type in order to meet all requirements
raised by data practitioners.

Even with an upcoming W3C recommendation, it can be expected that
several constraint languages will be used in practice in future – consider the
situation in the XML world, where a standardized schema language was avail-
able from the beginning and yet additional ways to formulate and check con-
straints have been created. Therefore, semantically equivalent constraints of
the same constraint type represented in different languages will exist, which
raises two questions:

1. How to ensure for any constraint type that RDF data is consistently val-
idated against semantically equivalent constraints of the same constraint
type across RDF-based constraint languages?

2. How to ensure for any constraint type that semantically equivalent con-
straints of the same constraint type can be transformed from one RDF-
based constraint language to another?

1. Consistent Validation regarding Validation Results for each
Constraint Type across RDF-based Constraint Languages

Even though SPIN provides a convenient way to represent constraint viola-
tions and to validate RDF data, the implementation of a high-level constraint
language still requires a tedious mapping to SPIN with a certain degree of
freedom how the violation of constraints of a certain type is represented and
how constraints of a particular type are checked.

Checks of semantically equivalent constraints of the same constraint type
should detect the same set of violations regardless of the language used to
express them. This means that whenever semantically equivalent constraints
in different languages are checked on RDF data they should point out the
same violations.
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Our framework therefore provides a common ground that is solely based
on the abstract definitions of constraint types. By providing just one SPIN
mapping for each constraint type,1 we ensure that the details of the SPIN
implementation are consistent for a specific constraint type irrespective of the
language and that the validation of semantically equivalent constraints of the
same constraint type in different languages leads always to exactly the same
results.

2. Transforming Semantically Equivalent Constraints of any
Constraint Type across RDF-based Constraint Languages

As there is no standard way to express constraints, semantically equivalent
constraints of the same type are expressible by a variety of constraint lan-
guages - each of them different in syntax and semantics. Transformations of
semantically equivalent constraints of the same type from one language to
another are important (1) to enhance the interoperability of constraint lan-
guages, (2) to resolve misunderstandings and ambiguities in the interpretation
of constraints, and (3) to avoid the necessity to understand several constraint
languages.

Consistent implementations of constraint languages provide some advan-
tage, but it could be argued that they are not important enough to justify
the additional layer. The situation, however, is different when transformations
from one constraint language to another are desired, i.e., to transform a spe-
cific constraint scα of any constraint type specifically expressed by language
α into a semantically equivalent specific constraint scβ of the same constraint
type represented by any other language β. By defining bidirectional mappings
between semantically equivalent specific constraints and the corresponding
generic constraint (gc), generically represented using the abstraction layer,
we are able to convert the semantically equivalent specific constraints auto-
matically from one language to another:

gc � mαpscαq

scβ � m1βpgcq

Mappings from constraint languages to the abstraction layer and back en-
able transformations of semantically equivalent constraints of the same type
from one constraint language to another and therefore increase the interoper-
ability of constraint languages.

We do not need to define mappings for each constraint type and each pos-
sible combination of n constraint languages. Assuming that we are able to
express constraints of a single constraint type like minimum qualified cardi-
nality restrictions in 10 languages; n � pn�1q � 90 mappings would be needed,
as mappings generally are not invertible. With an intermediate generic rep-
resentation of constraints, on the other side, we only need to define 2n � 20

1 Generic SPIN mappings for constraint types on GitHub
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mappings for each constraint type – where 10 mappings should already ex-
ist if we have an implementation for that particular constraint type in our
framework.

Furthermore, an additional abstraction layer simplifies the implementa-
tion of existing and newly developed constraint languages: all that is needed to
reuse consistent implementations of constraint types, which are based on their
abstract definitions, is to define bidirectional mappings between constraints
specifically expressed in a particular language and generically formulated con-
straints against which the validation of RDF data is actually implemented.

To summarize, if language developers are willing to provide two mappings
– forward (m) and backward (m1) – for each supported constraint type us-
ing our framework, we would not only get the consistent implementation of
all languages, it would also be possible to transform semantically equivalent
constraints between all constraint languages.

The remainder of this chapter is organized in four parts. In Section 7.1, we
introduce the general validation framework, its additional abstraction layer on
top of SPARQL, and its core building blocks.

In Section 7.2, we delineate in form of an intuitive and representative
example how a constraint of a given constraint type in a specific language
is translated into its generic intermediate representation to be checked on
RDF data and how to provide a consistent implementation for that particular
constraint type across constraint languages.

We continue this example and depict how the generic representation of the
constraint is mapped back to its specific representation in a certain language
which forms the basis to transform the constraint into any other semantically
equivalent constraint expressed in any other RDF-based constraint language
(see Section 7.3).

In Section 7.4, we sketch how to combine the framework with SHACL, the
constraint language the W3C working group currently develops, in order to (1)
generate SHACL extensions for constraint types not supported by SHACL, (2)
enhance the interoperability between SHACL and other constraint languages,
and (3) maintain the consistency of the implementations of constraint types
among SHACL and other languages.

7.1 Validation Framework

When we fully implemented OWL 2 and DSP and to some extent other con-
straint languages using SPARQL as intermediate language, we found that
many mappings to SPIN actually resemble each other; particularly the map-
pings of the same constraint type in different languages, but also the map-
pings of different constraint types, though the latter only on a very superficial,
structural level. The basic idea of our framework is very simple: (1) we aim
at reducing the representation of constraints to the absolute minimum that
has to be provided in a mapping to SPIN to implement the validation for



166 7 Validation Framework for RDF-based Constraint Languages

constraint types and (2) we want to be able to express constraints of any
constraint type in order to meet all requirements raised by data practitioners.

Consider again our example for the SPIN representation of a concrete
constraint of the type minimum qualified cardinality restrictions (R-75) which
is checked to ensure that publications must have at least one author which
must be a person:

1 SPIN:
2 CONSTRUCT { [ a spin:ConstraintViolation ... . ] } WHERE {
3 ?subject
4 a ?C1 ;
5 ?predicate ?object .
6 BIND ( qualifiedCardinality ( ?subject, ?predicate, ?C2 ) AS ?c ) .
7 BIND( STRDT ( STR ( ?c ), xsd:nonNegativeInteger ) AS ?cardinality ) .
8 FILTER ( ?cardinality < ?minimumCardinality ) .
9 FILTER ( ?minimumCardinality = 1 ) .

10 FILTER ( ?C1 = :Publication ) .
11 FILTER ( ?C2 = :Person ) .
12 FILTER ( ?predicate = :author ) . }
13

14 SPIN function qualifiedCardinality:
15 SELECT ( COUNT ( ?arg1 ) AS ?c ) WHERE { ?arg1 ?arg2 ?object . ?object a ?arg3 . }

However complex this SPIN code looks like, all we have to provide to
make it work is the desired minimum cardinality (?minimumCardinality), the
property to be constrained (?predicate), the class whose individuals must
hold for the constraint (?C1), and the class for which the property should be
restricted (?C2). All other variables are bound internally. So we could reduce
the effort of the mapping by simply providing these four values, which are
readily available in all representations of the constraint in different high-level
constraint languages:

1 OWL 2: :Publication a owl:Restriction ;
2 owl:minQualifiedCardinality 1 ;
3 owl:onProperty :author ;
4 owl:onClass :Person .
5

6 ShEx: :Publication { :author @:Person{1, } }
7

8 ReSh: :Publication a rs:ResourceShape ; rs:property [
9 rs:propertyDefinition :author ;

10 rs:valueShape :Person ;
11 rs:occurs rs:One-or-many ; ] .
12

13 DSP: [ dsp:resourceClass :Publication ; dsp:statementTemplate [
14 dsp:minOccur 1 ;
15 dsp:property :author ;
16 dsp:nonLiteralConstraint [ dsp:valueClass :Person ] ] ] .
17

18 SHACL: :PublicationShape
19 a sh:Shape ;
20 sh:scopeClass :Publication ;
21 sh:property [
22 sh:predicate :author ;
23 sh:valueShape :PersonShape ;
24 sh:minCount 1 ; ] .
25 :PersonShape
26 a sh:Shape ;
27 sh:scopeClass :Person .
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In further investigation of all kind of constraints and particularly the list
of constraint types, we aimed at identifying the building blocks of such con-
straints to come up with a concise representation of constraints of every con-
straint type.

7.1.1 Building Blocks

At the core, we use a very simple conceptual model for constraints (see Figure
7.1), using a small lightweight vocabulary called RDF Constraints Vocabulary
(RDF-CV).2

Fig. 7.1. RDF Constraints Vocabulary (RDF-CV) Conceptual Model

Constraints on RDF data are either simple constraints or complex con-
straints. Simple constraints denotes the set of atomic constraints with respect
to a single constraining element – we will come to the notion of a constraining
element in a second. In contrast, there are complex constraints, i.e., the set of
constraints which are created out of simple and/or other complex constraints.
60% of the overall 81 identified constraint types are used to instantiate simple
constraints and 26% to instantiate complex constraints. Constraints of 14%
of the constraint types are complex constraints which can be simplified and
therefore formulated as simple constraints if additional constraining elements
are introduced to cover them (see Table 7.1 and Chapter C of the appendix
[135] for the individual assignments of constraints of each constraint type to
constraint sets to be distinguished according to the RDF-CV).

Table 7.1. Constraint Sets

Constraint Sets % (#)
Simple Constraints 60.5 (49)
Simple Constraints (Syntactic Sugar) 13.6 (11)
Complex Constraints 25.9 (21)
DL Expressible 64.2 (52)
Not DL Expressible 35.8 (29)
Total 100 (81)

2 Formal specification, HTML documentation, and UML class diagram on GitHub
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The properties describing a simple constraint are very structural, i.e., the
properties describe the structure of constraints. The central property is the
constraining element which refers to one of 103 constraining elements - de-
scribed and assigned to constraint types in Chapter E of the appendix [135].
Constraining elements are, e.g., taken from Description Logics. Another ex-
ample of a constraining element is the SPARQL function REGEX where a
regular expression is checked against some property value. In most cases, a
constraining element directly corresponds to a single constraint type, some-
times (as for REGEX) it is shared by several constraint types, and in a few
cases only the interplay of multiple constraining elements ensures that each
possible constraint of a certain type can be expressed. Complex constraints
again need several constraining elements to be formulated.

Irrespective of and additional to the constraining element, there are prop-
erties to describe the actual constraint; they can also be seen as parameters
for the constraining element. The context class limits the constraint to indi-
viduals of a specific class, i.e., the constraint must hold for all instances of
that class. Depending on the constraining element, a list of classes can be
provided, for example, to determine the valid classes for a value or to define a
class intersection to be used in a constraint. leftProperties and rightProperties
are lists usually containing properties the constraint is applied to. A typical
example for a constraint type with a right hand side list of properties would be
literal value comparison (R-43), where constraints like birthDate   deathDate

can be expressed. Finally, the constraining value contains a literal value to be
checked against; for instance, in the case of the REGEX constraining element,
it contains the regular expression to be evaluated.

This simple structure plus the constraining elements form the building
blocks of our proposed framework. In Chapter E of the appendix [135], we
list for every constraint type its representation in our framework which not
only shows that constraints of any constraint type can indeed be described
generically in this way, but which also forms the starting point for any mapping
to SPIN using this framework.

Formal Approach and Semantics

A cornerstone of the framework is the generic representation of constraints,
which can often be done using Description Logics, as for the minimum qual-
ified cardinality restriction Publication � ¥1 author.Person. This way, the
knowledge representation formalism Description Logics (DL) [12, 13, 196] with
its well-studied theoretical properties provides the foundational basis for the
framework. It turned out that constraints of 64% of the 81 constraint types
are actually expressible in DL. Only for the remaining 36%, other means, i.e.,
other constraining elements, had to be identified in order to be able to formu-
late constraints of these types. This is not surprising if we consider that OWL
is based on DL. In Chapter E of the appendix [135], we list for each in DL
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expressible constraint type the DL constructs needed to formulate constraints
of that particular type.

When we talk about using DL to represent constraints, we have to establish
once more that the semantics of OWL and DL differ from the semantics
of constraint languages regarding the open world assumption (OWA) and
the non-unique name assumption (nUNA). Both are usually assumed when
dealing with OWL or DL, whereas validation usually assumes a closed world
assumption (CWA) and unique naming assumption (UNA), i.e., if a desired
property is missing, this leads to a violation and if two resources are named
differently, they are assumed to be different resources.

The applied semantics has to be defined if validation is performed, as the
results differ under different semantics. Precisely, we found that for 56.8%
of the constraint types validation results differ if the CWA or the OWA is
assumed and for 66.6% of the constraint types validation results are different
in case the UNA or the nUNA is assumed (see Chapter D of the appendix
[135]).

For the purpose of consistent implementations and transformations of se-
mantically equivalent constraints, constraints are considered to be semanti-
cally equivalent if the same set of violations are detected regardless of the
language used to express them, which means whenever the constraints are
expressed in different languages and checked on RDF data they point out the
same violations.

7.1.2 Simple Constraints

In this and the following section, we provide examples for the representa-
tion of constraints within the framework. The minimum qualified cardinality
restriction (R-75) Publication � ¥1 author.Person, which restricts publica-
tions to have at least one author which must be a person, is an example of a
simple constraint on the property author which holds for all individuals of the
class Publication. Table 7.2 displays how the simple constraint is generically
represented using the RDF-CV:

Table 7.2. Minimum Qualified Cardinality Restriction as Simple Constraint

context class left properties right p. classes constraining element c. value
Publication author - Person ¥ 1

The constraining element is an intuitive term which indicates the actual
type of constraint. For the majority of the constraint types, there is exactly
one constraining element. For the constraint type property domains (R-25),
e.g., there is only one constraining element with the same identifier property
domain (in singular form as the constraining element indicates one concrete
constraint of this type). Some constraint types, however, need several con-
straining elements to be expressed; language tag cardinality (R-48, R-49),
e.g., is used to restrict data properties to have a minimum, maximum, or
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exact number of relationships to literals with selected language tags. Thus,
three constraining elements are needed to express each possible constraint of
that constraint type. This example also illustrates that the granularity of the
constraint types varies and certainly often is debatable. Keep in mind that
they correspond to requirements as identified by various data practitioners.
The constraining elements, as in this example, are closer to atomic elements
of constraints.

If constraint types are expressible in DL, constraining elements are for-
mally based on DL constructs like concept and role constructors (�, �, [, \,
 , D, @, ¥, ¤), equality (=), and inequality (�). In case constraint types can-
not be expressed in DL such as data property facets (R-46) or literal pattern
matching (R-44), we reuse widely known terms from SPARQL (e.g., REGEX)
or XML Schema constraining facets (e.g., xsd:minInclusive) as constraining el-
ements. We provide a complete list of all 103 constraining elements to be used
to express constraints of any constraint type (see Chapter E of the appendix
[135]).

Additional to the constraining element, there are properties of simple con-
straints which can be seen as parameters for the constraining element. In
some cases, a simple constraint is only complete when a constraining value is
stated in conjunction with the constraining element. Depending on the con-
straining element, a list of classes can be provided, e.g., to determine valid
classes for values of given properties. The constraining element of the con-
straint Publication � ¥1 author.Person, e.g., is ¥, the constraining value is
1, and the list of classes includes the class Person which restricts the objects
of the property author to be persons.

The assignment of properties to left or right property lists depends on the
constraining element. Object property paths (R-55 ) ensure that if an individual
x is connected by a sequence of object properties with an individual y, then
x is also related to y by a particular object property. As Stephen-Hawking
is the author of the book A-Brief-History-Of-Time whose genre is Popular-
Science, the object property path authorOf � genre � authorOfGenre infers
that Stephen-Hawking is an author of the genre Popular-Science. Thus, when
representing the constraint using the RDF-CV (see Table 7.3), the properties
authorOf and genre are placed on the left side of the constraining element
property path and the property authorOfGenre on its right side.

The context class limits the constraint to individuals of a specific class. A
context class may be an rdfs:Class, an owl:Class (as sub-class of rdfs:Class),
or an rdfs:Datatype which is both an instance of and a sub-class of rdfs:Class.
As the object property paths constraint must hold for all individuals within
the data, the context class is set to the DL top concept J which stands for
the super-class of all possible classes.

Table 7.3. Object Property Path as Simple Constraint

context class left p. right p. classes c. element c. value
J authorOf, genre authorOfGenre J property path -
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Constraints of 36% of the constraint types are not expressible in DL, but
can still be described using the RDF-CV, such as constraints of the type
literal pattern matching (R-44 ) which restrict literals to match given patterns.
The universal quantification (R-91) Book � @ identifier.ISBN encapsulates
a literal pattern matching constraint to ensure that books can only have valid
ISBN identifiers, i.e., strings that match a given regular expression. Even
though constraints of the type literal pattern matching cannot be expressed
in DL, OWL 2 can be used to formulate this constraint:

1 :ISBN a RDFS:Datatype ; owl:equivalentClass [ a RDFS:Datatype ;
2 owl:onDatatype xsd:string ;
3 owl:withRestrictions ([ xsd:pattern "^\d{9}[\d|X]$" ])] .

The first OWL 2 axiom explicitly declares ISBN to be a datatype. The sec-
ond OWL 2 axiom defines ISBN as an abbreviation for a datatype restriction
on xsd:string. The datatype ISBN can be used just like any other datatype
like in the universal quantification above.

Table 7.4 presents how (1) the not in DL expressible literal pattern match-
ing constraint and (2) the in DL expressible universal quantification are both
generically represented as simple constraints using the RDF-CV. Thereby, the
context class ISBN, whose instances must satisfy the literal pattern matching
constraint, is reused within the list of classes the universal quantification refers
to. The literal pattern matching constraint type introduces the constraining
element REGEX whose validation has to be implemented once like for any
other constraining element.

Table 7.4. In DL and NOT in DL Expressible Constraints as Simple Constraints

context class left p. right p. classes c. element c. value
ISBN - - xsd:string REGEX ’ˆzdt9u[zd|X]$’
Book identifier - ISBN universal quantification -

7.1.3 Complex Constraints

Constraints of the type context-specific exclusive or of property groups (R-
13) restrict individuals of given classes to have property relationships of all
properties of exactly one of multiple mutually exclusive property groups. Pub-
lications, e.g., are either identified by an ISBN and a title (for books) or by
an ISSN and a title (for periodical publications), but it should not be possible
to assign both identifiers to a given publication - in ShEx:

1 ShEx:
2 :Publication {
3 ( :isbn xsd:string , :title xsd:string ) |
4 ( :issn xsd:string , :title xsd:string ) }

If The-Great-Gatsby is a publication with an ISBN and a title without
an ISSN, The-Great-Gatsby is considered as a valid publication. The same
constraint is generically expressible in DL which looks rather complex:
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Publication � ( E [ F) \ (E [  F)
E � A [ B , F � C [ D
A � ¥ 1 isbn.string [ ¤ 1 isbn.string
B � ¥ 1 title.string [ ¤ 1 title.string
C � ¥ 1 issn.string [ ¤ 1 issn.string
D � ¥ 1 title.string [ ¤ 1 title.string

The DL statements demonstrate that the constraint is complex as it is
composed of many other simple constraints (minimum (R-75) and maximum
qualified cardinality restrictions (R-76), intersection (R-15/16), disjunction
(R-17/18), and negation (R-19/20)).

Constraints of almost 14% of the constraint types are complex constraints
which can be simplified and therefore formulated as simple constraints when
using them in terms of syntactic sugar. As exact (un)qualified cardinality re-
strictions (R-74/80) (=n) and context-specific exclusive or of property groups
(R-13) are constraint types of frequently used complex constraints, we pro-
pose to simplify them in form of simple constraints. As a consequence, the
context-specific exclusive or of property groups complex constraint is repre-
sented more intuitively and concisely as a generic constraint by means of the
RDF-CV (see Table 7.5).

Table 7.5. Simplified Complex Constraint

context class left p. right p. classes c. element c. value
Publication - - E, F exclusive or -

E - - A, B intersection -
F - - C, D intersection -
A isbn - string = 1
B title - string = 1
C issn - string = 1
D title - string = 1

The primary key properties (R-226) constraint type is often useful to de-
clare a given (datatype) property as the primary key of a class, so that a
system can enforce uniqueness. Books, e.g., are uniquely identified by their
ISBN, i.e., the property isbn is inverse functional pfunct isbn q which can be
represented using the RDF-CV in form of a complex constraint consisting
of two simple constraints (see Table 7.6). The meaning of these simple con-
straints is that ISBN identifiers can only have isbn relations to at most one
distinct book.

Table 7.6. Primary Key Property as Complex Constraint

context class left p. right p. classes c. element c. value

J isbn� isbn - inverse property -
Book isbn� - - ¤ 1

Keys, however, are even more general, i.e., a generalization of inverse func-
tional properties [279]. A key can be a datatype, an object property, or a chain
of properties. For these generalization purposes, as there are different sorts of
keys, and as keys can lead to undecidability, DL is extended with a special
construct keyfor [211]. When using keyfor (isbn keyfor Book), the complex



7.2 Consistent Validation regarding Validation Results across RDF-based Constraint Languages 173

constraint can be simplified and thus formulated as a simple constraint using
the RDF-CV which looks like the following in concrete RDF turtle syntax:

1 RDF-CV:
2 [ a rdfcv:SimpleConstraint ;
3 rdfcv:contextClass :Book ;
4 rdfcv:leftProperties ( :isbn ) ;
5 rdfcv:constrainingElement "primary key" ] .

Complex constraints of frequently used constraint types which correspond
to DL axioms like transitivity, symmetry, asymmetry, reflexivity, and irreflex-
ivity can also be simplified in form of simple constraints. Although these DL
axioms are expressible by basic DL features, they can also be used in terms
of syntactic sugar.

Constraints of the irreflexive object properties (R-60) constraint type en-
sure that no individual is connected by a given object property to itself [196].
With the irreflexive object property constraint J �  DauthorOf.Self , e.g.,
one can state that individuals cannot be authors of themselves. When rep-
resented using the RDF-CV, the complex constraint aggregates three simple
constraints (see Table 7.7):

Table 7.7. Irreflexive Object Property as Complex Constraint

context class left p. right p. classes c. element c. value
D authorOf.Self authorOf - Self existential quantification -
 D authorOf.Self - - D authorOf.Self negation -

J - - J,  D authorOf.Self sub-class -

When using the irreflexive object property constraint in terms of syntactic
sugar, the complex constraint can be expressed more concisely in form of a
simple constraint with exactly the same semantics (see Table 7.8):

Table 7.8. Irreflexive Object Property as Simple Constraint

context class left p. right p. classes c. element c. value
J authorOf - - irreflexive property -

7.2 Consistent Validation regarding Validation Results
across RDF-based Constraint Languages

Independently of the language used to express constraints, checks of seman-
tically equivalent constraints should detect the same set of violations, which
means whenever semantically equivalent constraints in different languages are
checked on RDF data they should point out the same violations. Our frame-
work therefore provides a common ground that is solely based on the abstract
definitions of constraint types. By providing a SPIN mapping for each con-
straint type, it is ensured that the details of the SPIN implementation are
consistent irrespective of the constraint language and that the validation of
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semantically equivalent constraints of the same constraint type in different
languages leads always to exactly the same results independently of the lan-
guage used to express the constraints.

Using the framework for consistent implementations of constraint lan-
guages is straight-forward. For each language construct, the corresponding
constraint type and constraining element have to be identified. Again we use
the constraint Publication � ¥1 author.Person of the type minimum quali-
fied cardinality restrictions (R-75) which is supported by OWL 2:

1 :Publication rdfs:subClassOf
2 [ a owl:Restriction ;
3 owl:minQualifiedCardinality 1 ;
4 owl:onProperty :author ;
5 owl:onClass :Person ] .

From Table 7.2, we know the representation of the constraint in our frame-
work, which corresponds to the following generic intermediate representation
in RDF using the RDF-CV:

1 [ a rdfcv:SimpleConstraint ;
2 rdfcv:contextClass :Publication ;
3 rdfcv:leftProperties ( :author ) ;
4 rdfcv:classes ( :Person ) ;
5 rdfcv:constrainingElement "minimum qualified cardinality restriction" ;
6 rdfcv:constrainingValue 1 ] .

For the constraint type minimum qualified cardinality restrictions and the
respective constraining element, a mapping simply constructs this generic rep-
resentation out of the specific OWL 2 representation of the constraint using
a SPARQL CONSTRUCT query:

1 owl:Thing
2 spin:rule [ a sp:Construct ; sp:text """
3 CONSTRUCT {
4 [ a rdfcv:SimpleConstraint ;
5 rdfcv:contextClass ?subject ;
6 rdfcv:leftProperties :leftProperties ;
7 rdfcv:classes :classes ;
8 rdfcv:constrainingElement "minimum qualified cardinality restriction" ;
9 rdfcv:constrainingValue ?cv ] .

10 :leftProperties
11 rdf:first ?lp1 ;
12 rdf:rest rdf:nil .
13 :classes
14 rdf:first ?c1 ;
15 rdf:rest rdf:nil . }
16 WHERE {
17 ?subject rdfs:subClassOf*
18 [ a owl:Restriction ;
19 owl:minQualifiedCardinality ?cv ;
20 owl:onProperty ?lp1 ;
21 owl:onClass ?c1 ] . } """ ; ] .

The SPIN engine executes such mappings to convert constraints in high-
level constraint languages to their intermediate generic representation. The
property spin:rule links an rdfs:Class to SPARQL CONSTRUCT queries.
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Each query defines an inference rule that is applied to all instances of the
associated class and its sub-classes. The inference rule defines how additional
triples are inferred from what is stated in the WHERE clause. For each bind-
ing of the triple patterns within the WHERE clause of the rule, the triples in
the CONSTRUCT clause are generated and added to the underlying model
as inferred triples. At query execution time, the SPARQL variable ?subject is
bound to the currently validated instance of the class. As each resource per
default is assigned to the class owl:Thing, this inference rule is evaluated for
each subject of the input RDF graph.

Each constraint type and constraining element is implemented in exactly
the same way by providing a SPIN mapping which encompasses SPARQL
queries that check generically represented constraints on RDF data and pro-
duce constraint violation triples if constraints are violated, as described in
the previous Chapter 6. The next code snippet shows how we implemented
the validation of RDF data against constraints of the type minimum quali-
fied cardinality restrictions in case they are generically expressed using the
RDF-CV:

1 # construct constraint violation triples:
2 CONSTRUCT {
3 _:constraintViolation
4 a spin:ConstraintViolation ;
5 spin:violationRoot ?subject ;
6 rdfs:label ?violationMessage ;
7 spin:violationSource ?violationSource ;
8 :severityLevel :error ;
9 spin:violationPath ?lp1 ;

10 spin:fix ?violationFix }
11 WHERE {
12 # detect constraint type and constraining element:
13 [ a rdfcv:SimpleConstraint ;
14 rdfcv:contextClass ?cc ;
15 rdfcv:leftProperties ( ?lp1 ) ;
16 rdfcv:classes ( ?c1 ) ;
17 rdfcv:constrainingElement "minimum qualified cardinality restriction" ;
18 rdfcv:constrainingValue ?cv ] .
19

20 # relate constraint to data:
21 ?subject a ?cc .
22

23 # check constraint:
24 BIND ( rdfcv2spin:qualifiedCardinality( ?subject, ?lp1, ?c1 ) AS ?c ) .
25 BIND( STRDT ( STR ( ?cv ), xsd:nonNegativeInteger ) AS ?minimumCardinality )
26 BIND( STRDT ( STR ( ?c ), xsd:nonNegativeInteger ) AS ?cardinality )
27 FILTER ( ?cardinality < ?minimumCardinality ) .
28

29 # create string variables for validation results:
30 BIND ( ( ... ) AS ?violationMessage ) .
31 BIND ( ( ... ) AS ?violationSource ) .
32 BIND ( ( ... ) AS ?violationFix ) . }
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7.3 Transforming Constraints across RDF-based
Constraint Languages

As stated in the introduction of this chapter, we see a huge potential in the pos-
sibility to transform semantically equivalent constraints from one high-level
constraint language to another via the RDF-CV representation, to avoid that
for each constraint type every possible combination of constraint languages
has to be mapped separately. The following SPIN inference rule exemplifies
this approach and provides a mapping from the RDF-CV back to the OWL
2 constraint of the type minimum qualified cardinality restrictions:

1 owl:Thing
2 spin:rule [ a sp:Construct ; sp:text """
3 CONSTRUCT {
4 ?cc rdfs:subClassOf*
5 [ a owl:Restriction ;
6 owl:minQualifiedCardinality ?cv ;
7 owl:onProperty ?lp1 ;
8 owl:onClass ?c1 ] . }
9 WHERE {

10 ?subject
11 a rdfcv:SimpleConstraint ;
12 rdfcv:contextClass ?cc ;
13 rdfcv:leftProperties ?leftProperties ;
14 rdfcv:classes ?classes ;
15 rdfcv:constrainingElement "minimum qualified cardinality restriction" ;
16 rdfcv:constrainingValue ?cv .
17 ?leftProperties
18 rdf:first ?lp1 ;
19 rdf:rest rdf:nil .
20 ?classes
21 rdf:first ?c1 ;
22 rdf:rest rdf:nil . } """ ; ] .

It can be seen that the mapping is quite similar to the first mapping from
OWL 2 constraints to RDF-CV constraints and basically simply switches the
CONSTRUCT and WHERE part of the query, with slight adjustment in
the structure of the variables. Potentially an even simpler representation for
the mapping could be found that would enable the creation of forward and
backward mappings out of it. We didn’t investigate this further, though, and
it is not yet clear if there can be cases where the backward mapping is more
different.

7.4 Combining the Framework with SHACL

In this section, we sketch how to combine the framework with SHACL, the
constraint language the W3C working group currently develops, in order to (1)
generate SHACL extensions for constraint types not supported by SHACL, (2)
enhance the interoperability between SHACL and other constraint languages,
and (3) maintain the consistency of the implementations of constraint types
among SHACL and other languages.
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7.4.1 Generating SHACL Extensions for Constraint Types

As the Shapes Constraint Language (SHACL) [186], a language for describing
and constraining the contents of RDF graphs, is still under constant devel-
opment, it is not surprising that, at the time the thesis is published, SHACL
supports only half of the constraint types. We assume and expect that SHACL
will cover the majority of the constraint types when the language is published
as W3C recommendation.

In addition to the high-level vocabulary SHACL provides, so-called native
constraints can be defined using SPARQL and similar execution languages
like JavaScript. Native constraints in a language like SPARQL typically pro-
vide a lot of flexibility which enables to formulate constraints of constraint
types which are only expressible by plain SPARQL. With such an extension
mechanism, the combination of SHACL and SPARQL enables to express all
constraint types.

Within the vocabulary of SHACL, there is no term which allows to spec-
ify constraints of the type language tag matching (R-47). Though, a native
SPARQL constraint of that type may be associated with a shape to restrict
that values of the data property germanLabel must be literals with a German
language tag:

1 SHACL Shapes Graph:
2 :CountryShape
3 a sh:Shape ;
4 sh:scopeClass :Country ;
5 sh:constraint [
6 sh:message "Values of the data property ’germanLabel’ must be
7 literals with a German language tag!" ;
8 sh:sparql """
9 SELECT $this ($this AS ?subject) (:germanLabel AS ?predicate)

10 (?value AS ?object)
11 WHERE {
12 $this :germanLabel ?value .
13 FILTER (!isLiteral(?value) || !langMatches(lang(?value), "de"))
14 } """ ; ] .
15

16 Data Graph:
17 :ValidCountry
18 a :Country ;
19 :germanLabel "Die vereinigten Staaten von Amerika"@de .
20

21 :InvalidCountry
22 a :Country ;
23 :germanLabel "The United States of America"@en .

The scope of the shape includes all instances of Country. For those in-
stances (represented by the variable $this), the SPARQL query walks through
the values of germanLabel and verifies that they are literals with a German
language code. Exactly the same semantically equivalent constraint can be
generically and concisely formulated using the RDF-CV:

1 RDF-CV:
2 [ a rdfcv:SimpleConstraint ;
3 rdfcv:contextClass :Country ;
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4 rdfcv:leftProperties ( :germanLabel ) ;
5 rdfcv:constrainingElement "language tag matching" ;
6 rdfcv:constrainingValue "de" ] .

In the same way, each constraint type without a corresponding term in the
SHACL vocabulary is generically expressible by means of the RDF-CV. It is
conceivable to derive SHACL extensions with a SPARQL body (like the one
above) for each constraint type not supported by SHACL out of the generic
intermediate representation of constraint types and their SPIN mappings in-
cluding the SPARQL queries to actually check instantiated constraints.

7.4.2 Enhancing the Interoperability between SHACL and other
Constraint Languages

Mappings from SHACL and other high-level constraint languages to the
abstraction layer and back enable transformations of semantically equivalent
constraints of the same type between SHACL and these languages, possibly
different in syntax and semantics. Hence, these mappings increase the inter-
operability of constraint languages with SHACL.

Default values for objects (R-31 ) or literals (R-38 ) of given properties
within the context of given classes are inferred automatically when these prop-
erties are not present in the data. Per default, the status of a book should be
marked as published, i.e., the value of the property isPublished should be true
for books in case the property is not stated for a certain book. The same se-
mantically equivalent constraint of the type default values can be formulated
in different languages:

1 SPIN:
2 owl:Thing
3 spin:rule [ a sp:Construct ; sp:text """
4 CONSTRUCT {
5 ?subject :isPublished true . }
6 WHERE {
7 ?subject a :Book .
8 FILTER NOT EXISTS { ?subject :isPublished ?literal } . } """ ; ] .
9

10 ReSh:
11 :BookResourceShape
12 a oslc:ResourceShape ;
13 oslc:property [
14 oslc:propertyDefinition :isPublished ;
15 oslc:defaultValue true ] .
16

17 SHACL:
18 :BookShape
19 a sh:Shape ;
20 sh:scopeClass :Book ;
21 sh:property [
22 sh:predicate :isPublished ;
23 sh:defaultValue true ; ] .

Note that the SPIN representation of the constraint is a direct expression
of the constraint using a SPIN rule which is executed for each resource of
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the validation graph. A SPIN rule contains a SPARQL CONSTRUCT query
which generates triples if all triple patterns within the SPARQL WHERE
clause match.

By defining mappings from SHACL, ReSh, and SPIN constraints of the
constraint type default values to the respective generic constraint (see Table
7.9) and back, arbitrary SHACL constraints of the constraint type default
values can be converted to semantically equivalent constraints in SPIN and
ReSh as well as the other way round.

Table 7.9. Generic Representation of the Constraint Type Default Values

context class left p. right p. classes c. element c. value
Book isPublished - - default value true

7.4.3 Synchronizing Consistent Implementations of Constraint
Types across Constraint Languages

Independently of the language used to express constraints, checks of se-
mantically equivalent constraints should detect the same set of violations. As
our framework is solely based on the abstract definitions of constraint types
and as we provide just one SPIN mapping for each constraint type, it is en-
sured that the details of the SPIN implementation of a constraint type are
consistent irrespective of the constraint language and that the validation of
RDF data against semantically equivalent constraints of the same type in
different languages leads always to exactly the same results.

By providing mappings from SHACL constraints of constraint types sup-
ported by SHACL to their generic intermediate representation, we are able to
reuse once defined implementations for these constraint types that are con-
sistent across constraint languages. By synchronizing the implementations for
constraint types (1) we generically offer within our framework and (2) SHACL
provides, constraint types remain consistently implemented.

7.5 Conclusion

We outlined our idea of a general framework to support the mapping of high-
level constraint languages to an additional layer on top of SPARQL which can
directly be used for validation by providing a mapping from the intermediate
generic representation to SPIN which enables to actually validate RDF data
against constraints provided in any RDF-based language.

We generalize from the experience completely implementing OWL 2 and
DSP and introduce an abstraction layer that is able to describe constraints of
any type in a way that mappings from high-level constraint languages to this
intermediate generic representation can be created straight-forwardly. The
additional abstraction layer reduces the representation of constraints to the
absolute minimum that has to be provided in a mapping to SPIN.
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The knowledge representation formalism Description Logics provides the
foundational basis for the framework, which consists of a very simple concep-
tual model with a simple structure using a small lightweight vocabulary, the
RDF Constraints Vocabulary (RDF-CV). The core of the framework’s build-
ing blocks comprises 103 constraining elements that are used to formulate
constraints of all the 81 identified constraint types. In a technical report [51],
we list for every constraint type its representation in our framework which not
only shows that constraints of any constraint type can indeed be described
generically in this way, but which also forms the starting point for any map-
pings using this framework.

We demonstrated how the framework can be used to map a constraint
language to the RDF-CV and back. The latter enables the transformation of
semantically equivalent constraints of the same type from one constraint lan-
guage to another via the intermediate representation. This approach is also
suitable to support the extension of constraint languages when additional con-
straint types should be supported by means of a simple bidirectional mapping.

Even though SPIN provides a convenient way to represent constraint viola-
tions and to validate RDF data, the implementation of a high-level constraint
language still requires a tedious mapping to SPIN with a certain degree of
freedom how constraints of a certain type are checked and how violations of
constraints of a particular type are represented.

Our framework therefore provides a common ground that is solely based
on the abstract definitions of constraint types. By providing just one SPIN
mapping for each constraint type, it is ensured that the details of the SPIN
implementation are consistent irrespective of the constraint language and that
the validation of RDF data against semantically equivalent constraints of the
same constraint type leads always to exactly the same results independently
of the language used to express them.

Acknowledgements
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simplify language implementations [45]. In a technical report, we list for each
constraint type its representation in our framework, which not only shows
that constraints of any type can indeed be described generically in this way,
but also forms the starting point for any mappings using this framework [51].
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The Role of Reasoning for RDF Validation

The set of constraint types forms the basis to investigate the role that reason-
ing and different semantics play in practical data validation, when reasoning
is beneficial for RDF validation, and how to overcome the major shortcom-
ings when validating RDF data by performing reasoning prior to validation.
Validation and reasoning are closely related. Reasoning is beneficial for RDF
validation as (1) it may resolve constraint violations, (2) it may cause valuable
violations, and (3) it solves the redundancy problem.

A major shortcoming when validating RDF data is redundancy. Consider
that a publication must have a publication date which is a typical constraint.
When defining books, conference proceedings, and journal articles as sub-
classes of publication, one would require to assign the concerned constraint
explicitly to each sub-class, since instances of each of them should have a
publication date. Reasoning is a promising solution as pre-validation step to
overcome this shortcoming. Reasoning in Semantic Web refers to logical rea-
soning that makes implicitly available knowledge explicitly available. When
performing reasoning one can infer that books must have a publication date
from the facts that books are publications and publications must have a pub-
lication date. We remove redundancy by associating the constraint only with
the super-class publication.

Users should be enabled to select on which constraint types to perform
reasoning before data is validated and which constraint types to use to ensure
data accuracy and completeness without reasoning. We therefore investigate
the effect of reasoning to the validation process for each constraint type, i.e.,
we examine for each constraint type if reasoning may be performed prior to
validation to enhance data quality either by resolving violations or by raising
valuable violations and solving them (see Section 8.1).

We furthermore examine the effects of reasoning on the performance of
constraint types. Hence, we investigate for each constraint type how efficient
in terms of runtime validation is performed with and without reasoning. By
mapping to Description Logics (DL) we get an idea of the performance for each
constraint type in worst case, since the combination of DL constructs needed
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to express a constraint type determines its computational complexity (see
Section 8.1). For this reason, we determined which DL constructs are needed
to express each constraint type (see Chapter E of the appendix [135]). Thus,
the knowledge representation formalism DL, with its well-studied theoretical
properties, provides the foundational basis for constraint types.

Validation and reasoning assume different semantics which may lead to
different validation results when applied to particular constraint types. Rea-
soning requires the open-world assumption (OWA) with the non-unique name
assumption (nUNA), whereas validation is classically based on the closed-
world assumption (CWA) and the unique name assumption (UNA). There-
fore, we investigate for each constraint type if validation results differ (1) if
the CWA or the OWA and (2) if the UNA or the nUNA is assumed, i.e., we
examine for each constraint type (1) if it depends on the CWA and (2) if it
depends on the UNA (see Section 8.2).

Using these findings, we are able to determine which constraint types the
six most common constraint languages enable to express (see Table 8.1 and
Chapter B of the appendix [135] for more details on this evaluation). We
use CT to refer to the whole set of constraint types, R to abbreviate the
35 constraint types for which reasoning may be performed before actually
validating to enhance data quality and R to denote the 46 constraint types
for which reasoning does not improve data quality in any obvious sense.

Table 8.1. Expressivity of Constraint Languages regarding Reasoning

CT (81) R (46) R (35)
SPIN 100.0 (81) 100.0 (46) 100.0 (35)
OWL 2 DL 67.9 (55) 45.7 (21) 97.1 (34)
SHACL 51.9 (42) 52.2 (24) 51.4 (18)
ShEx 29.6 (24) 26.1 (12) 34.3 (12)
ReSh 25.9 (21) 15.2 (7) 40.0 (14)
OWL 2 QL 24.7 (20) 19.6 (9) 31.4 (11)
DSP 17.3 (14) 13.0 (6) 22.9 (8)

For OWL 2, we differentiate between the sub-languages OWL 2 QL and
OWL 2 DL as they differ with regard to expressivity and efficiency in per-
formance. Table 8.1 shows in percentage values (and absolute numbers in
brackets) how many CT , R, and R constraint types are supported by listed
constraint languages. Although OWL 2 is the only language for which reason-
ing features are already implemented, R constraint types are also expressible
by other languages.

Having information on the constraint type specific expressivity of con-
straint languages enables validation environments to recommend the right
language depending on the users’ individual use cases. These use cases deter-
mine which requirements have to be fulfilled and therefore which constraint
types have to be expressed to meet these use cases.

The finding that SPIN is the only language that supports all reasoning
constraint types underpins the importance to implement reasoning capabil-
ities using SPIN (or plain SPARQL). The fact that all R and R constraint
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types are representable by SPIN emphasizes the significant role SPIN plays
for the future development of constraint languages. Another important role
may play OWL 2 DL with which 2/3 of all, nearly 1/2 of the R, and almost all
R constraint types can be expressed. Even though some R constraint types
correspond to OWL 2 DL axioms, we cannot use them directly to validate
RDF data since OWL 2 reasoning and validation assume different semantics
which may lead to differences in results. The upcoming W3C recommendation
SHACL currently supports half of the R and half of the R constraint types.

The contributions of this chapter are: (1) We work out the role that rea-
soning plays in practical data validation, when reasoning is beneficial for RDF
validation, and how to overcome the major shortcomings when validating RDF
data by performing reasoning prior to validation. (2) For each constraint type,
we examine if reasoning may improve data quality, how efficient in terms of
runtime validation is performed with and without reasoning, and if validation
results depend on the CWA and on the UNA. (3) We determine which reason-
ing constraint types the most common constraint languages enable to express
and give directions for their further development. (4) We provide validation
and reasoning implementations of constraint types1 to be used to drive the
further development of constraint languages (see Section 8.3).

8.1 Reasoning

DL provides the foundational basis for the expressive language OWL 2 which
offers knowledge representation and reasoning services. Validation is not the
primary purpose of its design which has lead to claims that OWL 2 cannot
be used for validation. In practice, however, OWL 2 is well-spread and RDF-
S/OWL 2 constructs are widely used to tell people and applications about
how valid instances should look like. In general, RDF documents follow the
syntactic structure and the semantics of RDFS/OWL 2 ontologies which could
therefore not only be used for reasoning but also for validation.

In this section, we investigate the role that reasoning plays in practical data
validation and how to overcome the major shortcomings when validating RDF
data by performing reasoning prior to validation. As reasoning is beneficial
for validation, we investigate the effect of reasoning to the validation process
for each constraint type. Reasoning is beneficial for validation as (1) it may
resolve constraint violations, (2) it may cause useful violations, and (3) it
solves the redundancy problem. Consider the following DL knowledge base K
- a DL knowledge base is a collection of formal statements which correspond
to facts or what is known explicitly:

1 Validation and reasoning implementations of constraint types on GitHub
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K � t
Book � @ author.Person,
Book(Huckleberry-Finn),
author(Huckleberry-Finn, Mark-Twain),
Book � Publication,
Publication � D publisher.Publisher,
editor � creator,
Book � @ identifier.ISBN }

As we know that books can only have persons as authors (Book � @

author.Person), Huckleberry-Finn is a book (Book(Huckleberry-Finn)), and
Mark Twain is its author (author(Huckleberry-Finn, Mark-Twain)), we con-
clude that Mark Twain is a person. As Mark Twain is not explicitly defined to
be a person, however, a violation is raised. Reasoning may resolve violations
(1. benefit). If we apply reasoning before validating, the violation is resolved
since the implicit triple Person(Mark-Twain) is inferred and therefore made
explicitly available.

Reasoning may cause additional violations needed to enhance data quality
in case these additional violations are resolved (2. benefit). As books are pub-
lications (Book � Publication), constraints on publications are also checked
for books which may result in further valuable violations. As each publication
must have a publisher (Publication � D publisher.Publisher), e.g., a book
is a publication, Huckleberry-Finn is a book, and Huckleberry-Finn does not
have a publisher, a violation occurs. This violation would not have been raised
without reasoning before actually validating and thus data quality would not
be increased in case the violation is tackled.

The major shortcoming of classical constraint languages is redundancy. If
a particular constraint should hold for multiple classes, it is required to assign
the concerned constraint explicitly to each class. The redundancy problem is
solved (3. benefit) by associating the constraint with the super-class of these
classes and applying OWL 2 reasoning (see the introduction of this chapter).

Validation environments should enable users to select which constraint
types to use for completing data by reasoning and which ones to consider
as constraint types about data accuracy and completeness which could be
checked over the data once completed using reasoning. As reasoning is ben-
eficial for validating RDF data, we investigate the effect of reasoning to the
validation process for each constraint type, i.e., we examine for each constraint
type if reasoning may be performed prior to validation to enhance data qual-
ity either (1) by resolving violations or (2) by raising valuable violations. We
denote the whole set of constraint types with CT which we divide into two
disjoint sets:

1. R is the set of constraint types for which reasoning may be performed
prior to validation (especially when not all the knowledge is explicit) to
enhance data quality either by resolving violations or by raising valuable
violations. For R constraint types, validation is executed by query answer-
ing with optional reasoning prior to validation. 35 (43.2%) of the overall
81 constraint types are R constraint types.
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2. R denotes the complement of R, that is the set of constraint types for
which reasoning cannot be done or for which reasoning does not improve
data quality in any obvious sense. For R constraint types, validation is
performed by query answering without reasoning. 46 (56.8%) of the overall
81 constraint types are R constraint types.

If a journal volume has an editor relationship to a person, then the
journal volume must also have a creator relationship to the same person
(editor � creator),i.e., editor is a sub-property of creator. If we use sub-
properties (R-54/64 ) without reasoning and the data contains the triple
editor (A+Journal-Volume, A+Editor), then the triple creator (A+Journal-

Volume, A+Editor) has to be stated explicitly. If this triple is not present in
the data, a violation occurs. If we use sub-properties with reasoning, however,
the required triple is inferred which resolves the violation. Sub-properties is
an R constraint type since reasoning may be performed prior to validation
to improve data quality by resolving the violation. Literal pattern matching
(R-44 ) restricts literals to match given patterns:

1 :ISBN a rdfs:Datatype ; owl:equivalentClass [ a rdfs:Datatype ;
2 owl:onDatatype xsd:string ;
3 owl:withRestrictions ([ xsd:pattern "^\d{9}[\d|X]$" ])] .

The first OWL 2 axiom explicitly declares ISBN to be a datatype. The sec-
ond OWL 2 axiom defines ISBN as an abbreviation for a datatype restriction
on xsd:string. The datatype ISBN can be used just like any other datatype
such as in the universal restriction Book � @ identifier.ISBN which ensures
that books can only have valid ISBN identifiers, i.e., strings that match a
given regular expression. Literal pattern matching is an R constraint type
since reasoning cannot be done, i.e., does not change validation results and
therefore does not improve data quality in any obvious sense.

For each constraint type we investigate how efficient in terms of runtime
validation is performed with and without reasoning. By mapping to DL we
get an idea of the performance of each constraint type in worst case, since the
combination of DL constructs needed to express a constraint type determines
its computational complexity.

8.1.1 Constraint Types with Reasoning

R is the set of constraint types for which reasoning may be performed prior to
validation to enhance data quality either by resolving violations or by causing
useful violations. For R constraint types, different types of reasoning may be
performed which depends on the language used to formulate the constraint
type. 11 of 35 R constraint types are representable by the less expressive but
better performing OWL 2 QL. 23 R constraint types, in contrast, are not
expressible by OWL 2 QL and therefore the more expressive but less per-
forming OWL 2 DL is used. Some of the R constraint types, however, are also
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representable by classical constraint languages (e.g., 40% are representable by
ReSh).

OWL 2 profiles are restricted versions of OWL 2 that offer different trade-
offs regarding expressivity vs. efficiency for reasoning. We consider the two
extreme OWL 2 profiles - OWL 2 QL and OWL 2 DL - as OWL 2 QL is the
profile with the highest performance and OWL 2 DL is the profile with the
highest expressivity while still being a DL. OWL 2 QL, based on the DL-Lite
family of DL [11, 75], is an OWL 2 profile which focuses on reasoning in the
context of query answering with very large size of instance data. OWL 2 DL
was standardized as a DL-like formalism with high expressivity, yet maintains
decidability for main reasoning tasks. As a result of its expressive power, OWL
2 DL allows a large variety of sophisticated modeling capabilities for many
application domains. The drawback of its expressive power results as a lack
of computational efficiency in performance.

With regard to the two different types of reasoning we divide R into two
not disjoint sets of constraint types: RQL � RDL (OWL 2 DL is more expres-
sive than OWL 2 QL).

1. RQL is the set of R constraint types for which OWL 2 QL reasoning may
be performed as they are expressible by OWL 2 QL. 11 of 35 R constraint
types are RQL constraint types.

2. RDL stands for the set of R constraint types for which OWL 2 DL reason-
ing may be executed as OWL 2 QL is not expressive enough to represent
them [227]. 34 of 35 R constraint types are RDL constraint types.

Consider the following DL knowledge base K for the subsequent examples.

K � t
D author.J � Publication,
author(Alices-Adventures-In-Wonderland, Lewis-Carroll),
Publication � D publisher.Publisher,
publisher(A+Conference-Proceedings, A+Publisher),
rdf:type(A+Publisher, Publisher),
Publication � @ author.Person,
author(The-Lord-Of-The-Rings, Tolkien),
rdf:type(The-Lord-Of-The-Rings, Publication) }

OWL 2 QL Reasoning.

The property domains (R-25 ) constraint D author.J � Publication ensures
that only publications can have author relationships (in OWL 2 QL: author
rdfs:domain Publication). Without reasoning, the triple author(Alices-Adven

tures-In-Wonderland, Lewis-Carroll) leads to a violation if it is not explicitly
stated that Alices-Adventures-In-Wonderland is a publication. With reason-
ing, on the contrary, the class assignment rdf:type(Alices-Adventures-In-Wonder
land, Publication) is inferred which prevents the violation to be raised. Thus,
reasoning improves data quality by resolving the violation. The existential
quantification (R-86 ) Publication � D publisher.Publisher restricts publica-
tions to have at least one publisher:
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1 OWL 2 QL:
2 :Publication rdfs:subClassOf
3 [ a owl:Restriction ;
4 owl:onProperty :publisher ;
5 owl:someValuesFrom :Publisher ] .

If reasoning is executed on the triples publisher(A+Conference-Proceedings,

A+Publisher) and rdf:type(A+Publisher, Publisher), it is inferred that A+Con
ference-Proceedings is a publication. Now, all constraints associated with pub-
lications are also validated for A+Conference-Proceedings - e.g., that publi-
cations must have at least one author. Without reasoning, in contrast, the
fact that A+Conference-Proceedings is a publication is not explicit in the
data which is the reason why constraints on publications are not validated for
A+Conference-Proceedings. Hence, additional violations, which may be useful
to enhance data quality in case the violations are taken into account, do not
occur.

RDF validation with reasoning corresponds to performing SPARQL queries.
As OWL 2 profiles are based on the DL-Lite family, OWL 2 QL is based on
DL-LiteR, and query answering in OWL 2 QL is performed in LogSpace
(or rather in AC0) [75], the same complexity class applies for validation by
queries with reasoning. As TBox reasoning in OWL 2 QL is performed in
Ptime [75], complete query rewriting as well as reasoning and subsequent
querying (combined complexity) is carried out in Ptime [11, 75].

OWL 2 DL Reasoning.

Universal quantifications (R-91 ) are used to build anonymous classes con-
taining all individuals that are connected by particular properties only to
instances/literals of certain classes/data ranges. Publications, e.g., can only
have persons as authors (Publication � @ author.Person):

1 OWL 2 DL:
2 :Publication rdfs:subClassOf
3 [ a owl:Restriction ;
4 owl:onProperty :author ;
5 owl:allValuesFrom :Person ] .

When performing reasoning, the triples author(The-Lord-Of-The-Rings, Tolkien)
and rdf:type(The-Lord-Of-The-Rings, Publication) let a reasoner infer that
Tolkien is a person which satisfies the universal quantification. In case reason-
ing is not executed, a violation is raised since it is not explicitly stated that
Tolkien is a person. As a consequence, constraints on persons are not checked
for Tolkien which prevents further validation.

With OWL 2 DL, the more expressive profile than OWL 2 QL, reasoning
is executed in N2exptime [227] which is a class of considerably higher com-
plexity than Ptime, the complexity class for OWL 2 QL reasoning. As we
consider ontological reasoning, complexity classes are assigned to sets of con-
straint types according to well-established complexity results in literature on
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reasoning of DL languages. Therefore, the classification also includes complex
logical interferences between TBox axioms.

8.1.2 Constraint Types without Reasoning

R is the set of constraint types for which reasoning cannot be done or for
which reasoning does not improve data quality in any obvious sense. Context-
specific exclusive or of properties (R-11 ) is a R constraint type with which it
can be defined that an individual of a certain class can either have property
A or property B, but not both. Identifiers of publications, e.g., can either be
ISBNs (for books) or ISSNs (for periodical publications), but it should not be
possible to assign both identifiers to a given publication:

K � t
Publication � ( A [ B) \ (A [  B),
A � D isbn.xsd:string,
B � D issn.xsd:string }

This constraint can be represented by OWL 2 DL by building an anony-
mous class for each exclusive property:

1 OWL 2 DL:
2 :Publication owl:disjointUnionOf ( :A :B ) .
3 :A rdfs:subClassOf [ a owl:Restriction ;
4 owl:onProperty :isbn ;
5 owl:someValuesFrom xsd:string ] .
6 :B rdfs:subClassOf [ a owl:Restriction ;
7 owl:onProperty :issn ;
8 owl:someValuesFrom xsd:string ] .

Exactly the same constraint can be expressed by ShEx more intuitively and
concisely:

1 ShEx:
2 :Publication ( :isbn xsd:string | :issn xsd:string )

It is a common requirement to narrow down the value space of prop-
erties by an exhaustive enumeration of valid values (R-30/37: allowed val-
ues). Reasoning on this constraint type does not change validation results
and therefore does not improve data quality. Books on the topics Com-
puter Science and Librarianship, e.g., should only have ComputerScience
and Librarianship as subjects. The corresponding DL statement Book � @

subject.{ComputerScience,Librarianship} is representable by DSP and OWL
2 DL:

1 DSP:
2 [ a dsp:DescriptionTemplate ;
3 dsp:resourceClass :Book ;
4 dsp:statementTemplate [
5 dsp:property :subject ;
6 dsp:nonLiteralConstraint [
7 dsp:valueURI :ComputerScience, :Librarianship ] ] ] .
8

9 OWL 2 DL:
10 :subject rdfs:range [ owl:equivalentClass [ a owl:Class;
11 owl:oneOf ( :ComputerScience :Librarianship ) ] ] .
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RDF validation without reasoning corresponds to performing SPARQL
queries. It is known that performing SPARQL queries is carried out in
Pspace-Complete [255]. Table 8.2 gives an overview over the complexity of
validation with and without reasoning. The higher the complexity class the
worse the performance. The order of the complexity classes is the following
[10]:

LogSpace � Ptime � Pspace-Complete � N2exptime

Table 8.2. Complexity of Validation with and without Reasoning

Validation Type Complexity Class

R Pspace-Complete

RQL
Ptime

RDL
N2exptime

We do not consider OWL 2 Full due to its high worst case complexity
(undecidability) and as all (except of one) R constraint types are already
expressible either by OWL 2 QL or OWL 2 DL.

8.2 CWA and UNA Dependency

RDF validation and OWL reasoning assume different semantics. Reasoning
in OWL 2 is based on the open-world assumption (OWA), i.e., a statement
cannot be inferred to be false if it cannot be proved to be true which fits
its primary design purpose to represent knowledge on the World Wide Web.
Consider the following DL knowledge base K:

K � t
Book � D title.J,
Book(Hamlet),
Publication � ¥1 author.Person,
Book [ JournalArticle � K,
funct (title),
title(Huckleberry-Finn, The-Adventures-of-Huckleberry-Finn),
title(Huckleberry-Finn, Die-Abenteuer-des-Huckleberry-Finn) }

As each book must have a title (Book � D title.J) and Hamlet is a book
(Book(Hamlet)), Hamlet must have at least one title as well. In an OWA
setting, this constraint does not cause a violation, even if there is no explicitly
defined title, since there must be a title for this book which we may not know
(K is consistent). As RDF validation has its origin in the XML world, many
RDF validation scenarios require the closed-world assumption (CWA), i.e.,
a statement is inferred to be false if it cannot be proved to be true. Thus,
classical constraint languages are based on the CWA where constraints need
to be satisfied only by named individuals. In the example, the CWA yields to
a violation since there is no explicitly defined title for the book Hamlet.
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OWL 2 is based on the non-unique name assumption (nUNA) whereas
RDF validation requires that different names represent different objects
(unique name assumption (UNA)). Although DLs/OWL 2 do not assume the
UNA, they have the constructs owl:sameAs and owl:differentFrom to state
that two names are the same or different. If validation would assume the OWA
and the nUNA, validation won’t be that restrictive and therefore we won’t
get the intended validation results. This ambiguity in semantics is one of the
main reasons why OWL 2 has not been adopted as the standard constraint
language for RDF validation in the past.

RDF validation and reasoning assume different semantics which may lead
to different validation results when applied to particular constraint types.
Hence, we investigate for each constraint type if validation results differ (1)
if the CWA or the OWA and (2) if the UNA or the nUNA is assumed, i.e.,
we examine for each constraint type (1) if the constraint type depends on the
CWA and (2) if the constraint type depends on the UNA.

We classify constraint types according to the dependency on the CWA
and the UNA which leads to four sets of constraint types: (1) CWA denotes
the set of constraint types which are dependent on the CWA, i.e., the set of
constraint types for which it makes a difference in terms of validation results if
the CWA or the OWA is assumed. Minimum qualified cardinality restrictions
(R-75 ) is a CWA constraint type. Publications, e.g., must have at least one
author (Publication � ¥1 author.Person). In a CWA setting, a publication
without an explicitly stated author violates the constraint, whereas with OWA
semantics, a publication without an explicitly stated author does not raise a
violation as the constraint entails that there must be an author which we may
not know.

(2) CWA is the complement of CWA and thus includes constraint types
which are independent on the CWA. Nothing can be a book and a journal
article at the same time (Book [ JournalArticle � K). For the constraint
type disjoint classes (R-7 ), it does not make any difference regarding vali-
dation results if the CWA or the OWA is taken, as if there is a publication
which is a book and a journal article a violation is raised in both settings, i.e.,
additional information does not change validation results.

(3) UNA denotes the set of constraint types which are dependent on
the UNA. For functional properties (R-57/65 ), it makes a difference with
regard to validation results if the UNA or the nUNA is assumed. As the
property title is functional (funct (title)), a book can have at most one
distinct title. UNA causes a clash if the book Huckleberry-Finn has more
than one title. For nUNA, however, reasoning concludes that the title The-
Adventures-of-Huckleberry-Finn must be the same as the title Die-Abenteuer-
des-Huckleberry-Finn which resolves the violation.

(4) UNA, the complement of UNA, denotes the set of constraint types
which are independent on the UNA. Literal value comparison (R-43 ) is an
example of a UNA constraint type which ensures that, depending on prop-
erty datatypes, two different literal values have a specific ordering with re-
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spect to an operator like <, <=, >, and >=. It has to be guaranteed,
e.g., that birth dates are before (<) death dates. If the birth and the
death date of Albert-Einstein are interchanged (birthDate(Albert-Einstein,

"1955-04-18"), deathDate(Albert-Einstein,

"1879-03-14")), a violation is thrown. The literal value comparison constraint
type is independent from the UNA as the violation is not resolved in case
there are further resources (e.g., AlbertEinstein, Albert Einstein) which point
to correct birth and death dates and which may be the same as the violating
resource when nUNA is assumed.

We evaluated for each constraint type if it is dependent on the CWA and
the UNA (for the detailed analysis we refer to Chapter D of the appendix
[135]). The result is that we distinguish between 46 (56.8%) CWA and 35
(43.2%) CWA and between 54 (66.6%) UNA and 27 (33.3%) UNA constraint
types. Hence, for the majority of the constraint types it makes a difference in
terms of validation results if the CWA or the OWA and if the UNA or the
nUNA is assumed. For the CWA and the UNA constraint types, we have to
be careful in case we want to use them for reasoning and for validation as in
both usage scenarios we assume different semantics which leads to different
results.

8.3 Implementation

We use SPIN, a SPARQL-based way to formulate and check constraints, as
basis to develop a validation environment, online available at http://purl.org/
net/rdfval-demo, to validate RDF data according to constraints expressed by
arbitrary constraint languages by mapping them to SPIN [44]. The SPIN en-
gine checks for each resource if it satisfies all constraints, which are associated
with its classes, and generates a result RDF graph containing information
about all constraint violations. We provide implementations for all constraint
types expressible by OWL 2 QL, OWL 2 DL, and DSP as well as for major
constraint types representable by ReSh and ShEx.2

By means of a property ranges (R-35 ) constraint it can be restricted that
author relations can only point to persons (DL: J � @ author.Person, OWL
2 DL: author rdfs:range Person.). There is one SPIN construct template for
each constraint type, so for the constraint type property ranges:

1 owl2spin:PropertyRanges a spin:ConstructTemplate ;
2 spin:body [ a sp:Construct ; sp:text """
3 CONSTRUCT {
4 _:constraintViolation a spin:ConstraintViolation [...] . }
5 WHERE {
6 ?OP rdfs:range ?C . ?x ?OP ?subject . ?subject a owl:Thing .
7 FILTER NOT EXISTS { ?subject a ?C } . } """ ; ] .

2 Implementations of constraint types on GitHub

http://purl.org/net/rdfval-demo
http://purl.org/net/rdfval-demo
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A SPIN construct template contains a SPARQL CONSTRUCT query gen-
erating constraint violation triples which indicate the subject, the properties,
and the constraint causing the violations and the reason why violations have
been raised. Violation triples, which are associated with a certain level of
severity (informational, warning, error), may also give some guidance how to
fix them. A SPIN construct template creates violation triples if all triple pat-
terns within the SPARQL WHERE clause match. If Doyle, the author of the
book Sherlock-Holmes (author(Sherlock-Holmes, Doyle)), e.g., is not explic-
itly declared to be a person, all triple patterns within the SPARQL WHERE
clause match and the SPIN construct template generates a violation triple.

Property ranges is an R constraint type, i.e., a constraint type for which
reasoning may be performed prior to validation to enhance data quality.
Therefore, validation environments should enable users to decide if reason-
ing on property ranges constraints should be executed before validation. If a
user decides to use reasoning, the triple rdf:type(Doyle, Person), whose ab-
sence caused the violation, is inferred before data is validated which resolves
the violation.

Validation environments should enable users (1) to select individual re-
sources for which reasoning should be performed on R constraints before they
are validated, (2) to select R constraint types for which reasoning should be
executed, and (3) to globally determine if for all R constraint types reason-
ing should be done. All resources, for which reasoning should be performed
prior to validation, are automatically assigned to the class Reasoning during
a pre-reasoning step. There is one SPIN rule for each R constraint type, so
for property ranges:

1 owl2spin:Reasoning spin:rule [ a sp:Construct ; sp:text """
2 CONSTRUCT { ?subject a ?C . }
3 WHERE { ?OP rdfs:range ?C . ?x ?OP ?subject . ?subject a owl:Thing .
4 FILTER NOT EXISTS { ?subject a ?C } . } """ ; ] .

The SPIN rule is executed for each resource of the class Reasoning. A
SPIN rule contains a SPARQL CONSTRUCT query which generates triples
if all triple patterns within the SPARQL WHERE clause match. In case
Doyle is not defined to be a person, all triple patterns match and the triple
rdf:type(Doyle, Person) is created. As a consequence, the violation on Doyle
is not raised. We implemented reasoning capabilities for all R constraint types
for which OWL 2 QL and OWL 2 DL reasoning may be performed.3

8.4 Conclusion

We clearly showed that for the majority of the constraint types validation
results differ depending on whether validation is based on the CWA or the
OWA and whether the UNA or the nUNA is underlying. For these constraint

3 Implementation of reasoning capabilities for reasoning constraint types on GitHub
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types, we have to be careful in case we want to use them for reasoning and
for validation as in both usage scenarios we assume different semantics which
leads to different results.

Equally, using or not using reasoning has serious impact on which con-
straints are considered to be violated or fulfilled. Obviously, these findings are
not new and should be clear to everyone working with RDF and Semantic
Web technologies. According to our experience, however, the topic data vali-
dation is far too often reduced to the selection of suitable constraint languages
which may be related to the obvious but yet inaccurate comparison of RDF
with XML as basis technology to represent data.

With this chapter, we want to make clear that it depends on more than
just the constraint language when validating RDF data and when develop-
ing appropriate systems. Therefore, in order to realize interoperable solutions
for data validation, three components are needed: (1) An adequate constraint
language is required that allows to represent the desired constraints. (2) The
underlying semantics has to be specified, be it open or closed world, particu-
larly if constraint types are used that depend on the choice of the semantics.
(3) It must be determined if reasoning should be involved in the validation
process or not. Necessary reasoning steps have to be predefined to allow the
correct interpretation of constraints, e.g., when constraints are defined on
super-classes to avoid redundancy.

Users should be enabled to select on which constraint types reasoning
should be performed before data is validated and which constraint types to
use to ensure data accuracy and completeness without reasoning. We therefore
investigated for each constraint type if reasoning may be performed prior to
validation to enhance data quality either by resolving violations or by raising
valuable violations. For more than 2/5 of the constraint types, reasoning may
be performed to improve data quality. For less than 3/5 of the constraint
types, however, reasoning cannot be done or does not improve data quality in
any obvious sense.

For reasoning constraint types, different types of reasoning may be per-
formed which depends on the language used to formulate the constraint type.
1/3 of the reasoning constraint types are representable by the less expressive
but better performing OWL 2 profile OWL 2 QL and thus OWL 2 QL reason-
ing may be performed. The remaining reasoning constraint types, in contrast,
are not expressible by OWL 2 QL and therefore the more expressive but less
performing OWL 2 sub-language OWL 2 DL is used.

For each constraint type, we examined how efficient in terms of runtime
validation is performed with and without reasoning in worst case. By mapping
to Description Logics we get an idea of the performance for each constraint
type in worst case, since the combination of Description Logics constructs
needed to express a constraint type determines its computational complexity.
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Evaluating the Usability of Constraint Types
for Assessing RDF Data Quality

Based on our work in the DCMI and the W3C working groups and the re-
quirements jointly identified within these working groups, we published by
today 81 types of constraints that are required by various stakeholders for
data applications. A concrete constraint is instantiated from one of the 81
constraint types and defined for a specific vocabulary.

For constraint formulation and RDF data validation, several languages
exist or are currently developed. Yet, there is no clear favorite and none of
the languages is able to meet all requirements raised by data practitioners and
therefore enables to express each of the 81 identified constraint types. This
is the reason why further research and development in the field of constraint
languages is needed.

In order to gain a better understanding about the role of certain con-
straint types for determining the quality of RDF data and thus to evaluate
the usability of identified constraint types for assessing RDF data quality, we
(1) collect 115 constraints of different types for three vocabularies commonly
used in the social, behavioral, and economic (SBE) sciences, either from the
vocabularies themselves or from several domain experts, (2) classify these con-
straints, and (3) conduct a large-scale evaluation by validating data against
these constraints.

These vocabularies are representative, cover different aspects of SBE
research data, and are a mixture of widely adopted, accepted, and well-
established vocabularies (QB and SKOS) and a vocabulary under development
(DDI-RDF).

We classify each constraint based on which types of constraint languages
are able to express its constraint type. Furthermore, we let the domain experts
classify the constraints according to the severity of their violation. Although
we provide default severity levels for each constraint, validation environments
should enable users to adapt the severity levels of constraints according to
their individual needs (see Section 9.1).

As we do not want to base our conclusions on the evaluation of vocabular-
ies, constraint definitions, and constraint classifications alone, we conduct a
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large-scale experiment. We evaluate the data quality of 15,694 data sets (4.26
billion triples) of SBE research data, obtained from 33 SPARQL endpoints,
by validating against these 115 constraints.

Based on the evaluation results, we formulate several findings to gain valu-
able insights for future developments in this field and make recommendations
to direct the further development of constraint languages. To make valid gen-
eral statements for all vocabularies, however, these findings still have to be
verified or falsified by evaluating the quality of RDF data represented by more
than three vocabularies (see Section 9.2).

We discuss constraints on RDF data in general. Note that the data repre-
sented in RDF can be data in the sense of the SBE sciences, but also metadata
about published or unpublished data. We generally refer to both simply as
RDF data.

9.1 Classification of Constraint Types and Constraints

To gain insights into the role that certain types of constraints play for assess-
ing the quality of RDF data, we use two simple classifications. On the one
hand, we classify constraint types based on whether they are expressible by
different types of constraint languages (see Chapter B of the appendix [135] for
the evaluation of the constraint type specific expressivity of the six most com-
mon constraint languages). On the other hand, we let several domain experts
classify constraints, which are formulated for a given vocabulary, according to
the perceived severity of their violation.

For the three vocabularies, several SBE domain experts determined the
severity level for each of the 115 constraints. In a technical report, we pro-
vide detailed textual descriptions for all these constraints as well as their
assignments to constraint types and severity levels [137]. In the following,
we summarize the classifications of constraint types and constraints for the
purpose of our evaluation.

9.1.1 Classification of Constraint Types according to the
Expressivity of Constraint Language Types

According to the expressivity of three different types of constraint lan-
guages, the complete set of constraint types encompasses the subsequent three
not disjoint sets of constraint types:
1. RDFS/OWL Based
2. Constraint Language Based
3. SPARQL Based
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RDFS/OWL Based. RDFS/OWL Based denotes the set of constraint
types which can be formulated with RDFS/OWL axioms when using them in
terms of constraints with CWA/UNA semantics and without reasoning.1

The modeling languages RDFS and OWL are typically used to formally
specify vocabularies and RDFS/OWL axioms are commonly found within
formal specifications of vocabularies. In general, constraints instantiated from
RDFS/OWL Based constraint types can be seen as a basic level of constraints
ensuring that the data is consistent with the formally and explicitly specified
intended semantics of vocabularies as well as with the integrity of vocabularies’
conceptual models about data.

Constraints of the type minimum qualified cardinality restrictions (R-75 ),
e.g., guarantee that individuals of given classes are connected by particular
properties to at least n different individuals/literals of certain classes or data
ranges. For DDI-RDF, a minimum qualified cardinality restriction can be ob-
tained from a respective OWL axiom to ensure that each disco:Questionnaire
includes (disco:question) at least one disco:Question:

1 OWL:
2 disco:Questionnaire rdfs:subClassOf
3 [ a owl:Restriction ;
4 owl:minQualifiedCardinality 1 ;
5 owl:onProperty disco:question ;
6 owl:onClass disco:Question ] .

In contrast to RDFS/OWL Based constraints, Constraint Language and
SPARQL Based constraints are usually not (yet) explicitly defined within
formal specifications of vocabularies. Instead, they are often specified within
formal as well as informal textual descriptions of vocabularies. Additionally,
we let domain experts define constraints when they agreed that violating these
constraints would affect the usefulness of the data.

Constraint Language Based. We further distinguish Constraint Lan-
guage Based as the set of constraint types that can be expressed by clas-
sical high-level constraint languages like ShEx, ReSh, and DSP. There is a
strong overlap between RDFS/OWL and Constraint Language Based con-
straint types as in many cases constraint types are expressible by both classical
constraint languages and RDFS/OWL. SPARQL, however, is considered as a
low-level implementation language in this context. In contrast to SPARQL,
high-level constraint languages are comparatively easy to understand and con-
straints can be formulated in a more concise way. Declarative languages may
be placed on top of SPARQL when using it as an execution language. For
Constraint Language Based constraint types, we expect a straight-forward
support in future constraint languages.

1 The entailment regime is to be decided by the implementers. It is our point that
reasoning affects validation and that a proper definition of the reasoning to be
applied is needed.
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Context-specific exclusive or of property groups (R-13 ) is a constraint type
which can be formulated by the high-level constraint language ShEx. Con-
straints of this type restrict individuals of given classes to have property links
of properties defined within exactly one of multiple mutually exclusive prop-
erty groups. Within the context of DDI-RDF, e.g., skos:Concepts can have ei-
ther skos:definition (when interpreted as theoretical concepts) or skos:notation
and skos:prefLabel properties (when interpreted as codes), but not both:

1 ShEx:
2 skos:Concept {
3 ( skos:definition xsd:string ) |
4 ( skos:notation xsd:string , skos:prefLabel xsd:string ) }

SPARQL Based. The set SPARQL Based encompasses constraint types
that are not expressible by RDFS/OWL or common high-level constraint lan-
guages but by plain SPARQL. For assessing the quality of thesauri, e.g., we
concentrate on their graph-based structure and apply graph- and network-
analysis techniques. An example of such constraints of the constraint type
structure is that a thesaurus should not contain many orphan concepts, i.e.,
concepts without any associative or hierarchical relations, lacking context in-
formation valuable for search. As the complexity of this constraint is relatively
high, it is only expressible by SPARQL, not that intuitive, and quite complex:

1 SPARQL:
2 SELECT ?concept WHERE {
3 ?concept a [ rdfs:subClassOf* skos:Concept ] .
4 FILTER NOT EXISTS { ?concept ?p ?o .
5 FILTER ( ?p IN ( skos:related, skos:relatedMatch,
6 skos:broader, ... ) ) . } }

SPARQL Based constraint types are today only expressible by plain
SPARQL. Depending on their usefulness, a support in high-level constraint
languages should be considered.

9.1.2 Classification of Constraints according to the Severity of
Constraint Violations

A concrete constraint is instantiated from one of the 81 constraint types
and defined for a specific vocabulary. It does not make sense to determine the
severity of constraint violations of an entire constraint type, as the severity de-
pends on the individual context and vocabulary. SBE experts determined the
default severity level2 for each of the 115 constraints to indicate how serious
the violation of the constraint is. Although we provide default severity levels
for each constraint, validation environments should enable users to adapt the
severity levels of constraints according to their individual needs.

2 The possibility to define severity levels for concrete constraints is in itself a re-
quirement (R-158 ).
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We use the classification system of log messages in software development
like Apache Log4j 2 [7], the Java Logging API,3 and the Apache Commons
Logging API 4 as many data practitioners also have experience in software de-
velopment and software developers intuitively understand these levels. We
simplify this commonly accepted classification system and distinguish the
three severity levels (1) informational, (2) warning, and (3) error. Violations of
informational constraints point to desirable but not necessary data improve-
ments to achieve RDF representations which are ideal in terms of syntax and
semantics of used vocabularies. Warnings indicate syntactic or semantic prob-
lems which typically should not lead to an abortion of data processing. Errors,
in contrast, are syntactic or semantic errors which should cause the abortion
of data processing.

Note that there is indeed a correlation between the severity of a constraint
and the classification of its type: RDFS/OWL Based constraints are in many
cases associated with an error level as they typically represent basic con-
straints: there is a reason why they have been included in the vocabulary
specification.

9.1.3 Classification Examples

To get an overview of the constraint types contained in each of the three
sets of constraint types, we delineate concrete constraints on the three vocab-
ularies, group them by constraint type set, and classify them according to the
severity of their violation.

RDFS/OWL Based. It is a common requirement to narrow down
the value space of properties by an exhaustive enumeration of valid val-
ues (R-30/37: allowed values): disco:CategoryStatistics, e.g., can only have
disco:computationBase relationships to the literals ”valid” and ”invalid” of
the datatype rdf:langString (default severity level: error). Consider the fol-
lowing DL knowledge base K:5

K � t CategoryStatistics � @ computationBase.

{valid,invalid} [ langString,

Variable � D concept.Concept,

DataSet � @ structure.DataStructureDefinition,

D hasTopConcept.J � ConceptScheme,

J � @ variable.Variable }

The constraint type existential quantifications (R-86 ) can be used to en-
force that instances of given classes must have some property relation to in-
dividuals/literals of certain types. Variables, e.g., should have a relation to

3 http://docs.oracle.com/javase/7/docs/api/java/util/logging/Level.html
4 http://commons.apache.org/proper/commons-logging
5 A DL knowledge base is a collection of formal statements which correspond to
facts or what is known explicitly.

http://docs.oracle.com/javase/7/docs/api/java/util/logging/Level.html
http://commons.apache.org/proper/commons-logging
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a theoretical concept (informational). The default severity level of this con-
straint is weak, as in most cases research can be continued without having
information about the theoretical concept of a variable.

A universal quantification (R-91 ) contains all those individuals that are
connected by a property only to individuals/literals of particular classes or
data ranges. Resources of the type qb:DataSet, e.g., can only have qb:structure
relationships to qb:DataStructureDefinitions (error).

Property domains (R-25 ) and property ranges (R-35 ) constraints restrict
domains and ranges of properties: only skos:ConceptSchemes, e.g., can have
skos:hasTopConcept relationships (error) and disco:variable relations can only
point to disco:Variables (error).

It is often useful to declare a given (data) property as the primary key (R-
226 ) of a class, so that a system can enforce uniqueness and build URIs from
user inputs and imported data. In DDI-RDF, resources are uniquely iden-
tified by the property adms:identifier, which is therefore inverse-functional
pfunct identifier q, i.e., for each rdfs:Resource x, there can be at most one
distinct resource y such that y is connected by adms:identifier to x (er-
ror). Keys, however, are even more general than inverse-functional properties
(R-58 ), as a key can be a data property, an object property, or a chain of prop-
erties [279]. For this reason, as there are different sorts of key, and as keys can
lead to undecidability, DL is extended with the construct keyfor (identifier
keyfor Resource) [211] which is implemented by the OWL 2 hasKey construct.

Constraint Language Based. Depending on property datatypes, two
different literal values have a specific ordering with respect to operators like
<(R-43: literal value comparison). Start dates (disco:startDate), e.g., must be
before (<) end dates (disco:endDate).

In many cases, resources must be members of controlled vocabularies (R-
32 ). If a QB dimension property, e.g., has a qb:codeList, then the value of the
dimension property on every qb:Observation must be in that code list (error).

Default values for objects (R-31 ) or literals (R-38 ) of given properties are
inferred automatically when the properties are not present in the data. The
value true for the property disco:isPublic indicates that a disco:LogicalDataSet
can be accessed by anyone. Per default, however, access to data sets should
be restricted (false) (informational).

SPARQL Based. The purpose of constraints of the type data model con-
sistency is to ensure the integrity of the data according to the intended seman-
tics of vocabularies’ conceptual models about data. Every qb:Observation, e.g.,
must have a value for each dimension declared in its qb:DataStructureDefinition
(error) and no two qb:Observations in the same qb:DataSet can have the same
value for all dimensions (warning). If a qb:DataSet D has a qb:Slice S, and S
has a qb:Observation O, then the qb:DataSet corresponding to O must be D
(warning).
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Objects/literals can be declared to be ordered for given properties (R-
121/217: ordering). Variables, questions, and codes, e.g., are typically orga-
nized in a particular order. If codes (skos:Concept) should be ordered, they
must be members (skos:memberList) in an ordered collection (skos:Ordered
Collection) representing the code list of a variable (informational).

It is useful to declare properties to be conditional (R-71 ), i.e., if particular
properties exist (or do not exist), then other properties must also be present
(or absent). To get an overview of a study, either an abstract, a title, an alter-
native title, or links to external descriptions should be provided. If an abstract
and an external description are absent, however, a title or an alternative ti-
tle should be given (warning). In case a variable is represented in form of a
code list, codes may be associated with categories, i.e., human-readable labels
(informational).

For data properties, it may be desirable to restrict that values of prede-
fined languages must be present for determined number of times (R-48/49:
language tag cardinality): (1) It is checked if literal language tags are set. Some
controlled vocabularies, e.g., contain literals in natural language, but without
information what language has actually been used (warning). (2) Language
tags must conform to language standards (error). (3) Some thesaurus concepts
are labeled in only one, others in multiple languages. It may be desirable to
have each concept labeled in each of the languages that are also used on the
other concepts, as language coverage incompleteness for some concepts may
indicate shortcomings of thesauri (informational) [213].6

9.2 Evaluation

In this section, based on an automatic constraint checking of a large amount
of RDF data sets, we formulate several findings to gain valuable insights and
make recommendations to direct the further development of constraint lan-
guages.

Despite the large volume of the evaluated data sets in general, we have
to keep in mind that in this study we only validate data against constraints
for three vocabularies. We took all well-established and newly developed SBE
vocabularies into account and defined constraints for the three vocabularies
of them, which are most commonly used in the SBE sciences. For these three
vocabularies, large data sets have already been published. For other SBE
vocabularies, however, there is often not (yet) enough data openly available
to draw general conclusions. Yet, these three vocabularies are representative,
cover different aspects of SBE research data, and are also a mixture of widely
adopted, accepted, and well-established vocabularies (QB and SKOS) on the
one side and a vocabulary under development (DDI-RDF) on the other side.

6 [213] investigated how to support taxonomists in improving SKOS vocabularies
by pointing out quality issues that go beyond the integrity constraints defined in
the SKOS specification.
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As the evaluation is based on only three vocabularies, we cannot make valid
general statements for all vocabularies, but we can formulate several findings
and make recommendations to direct the further development of constraint
languages. As these findings cannot be proved yet, they still have to be verified
or falsified by evaluating the quality of RDF data represented by further well-
established and newly developed vocabularies - used within the SBE sciences
and other domains.

9.2.1 Experimental Setup

On the three vocabularies DDI-RDF, QB, and SKOS, we collected 115 con-
straints,7 either from the vocabularies themselves or from several domain ex-
perts, and classified and implemented them for data validation. We ensured
that these constraints are equally distributed over the sets and vocabularies
we have. We then evaluated the data quality of 15,694 data sets (4.26 billion
triples) of SBE research data, obtained from 33 SPARQL endpoints,8 by val-
idating the data against these 115 constraints. Table 9.1 lists the number of
validated data sets and the overall sizes in terms of validated triples for each
of the vocabularies.

Table 9.1. Number of Validated Data Sets and Triples for each Vocabulary

Vocabulary Data Sets Triples

QB 9, 990 3, 775, 983, 610
SKOS 4, 178 477, 737, 281
DDI-RDF 1, 526 9, 673, 055

We validated, i.a., (1) QB data sets published by the Australian Bureau of
Statistics,9 the European Central Bank,10 and the Organisation for Economic
Co-operation and Development,11 (2) SKOS thesauri like the AGROVOC Mul-
tilingual agricultural thesaurus,12 the STW Thesaurus for Economics,13 and
the Thesaurus for the Social Sciences,14 and (3) DDI-RDF data sets provided
by the Microdata Information System,15 the Data Without Boundaries Dis-

7 Implementations of all 115 constraints on GitHub
8 To get further information about how to access individual SPARQL endpoints,

we refer to a technical report in which we describe the complete evaluation in
further detail [138].

9 http://abs.gov.au
10 http://www.ecb.europa.eu/home/html/index.en.html
11 http://www.oecd.org
12 http://202.45.139.84:10035/catalogs/fao/repositories/agrovoc
13 http://zbw.eu/stw/versions/latest/about
14 http://www.gesis.org/en/services/research/thesauri-und-klassifikationen/

social-science-thesaurus
15 http://www.gesis.org/missy

http://abs.gov.au
http://www.ecb.europa.eu/home/html/index.en.html
http://www.oecd.org
http://202.45.139.84:10035/catalogs/fao/repositories/agrovoc
http://zbw.eu/stw/versions/latest/about
http://www.gesis.org/en/services/research/thesauri-und-klassifikationen/social-science-thesaurus
http://www.gesis.org/en/services/research/thesauri-und-klassifikationen/social-science-thesaurus
http://www.gesis.org/missy
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covery Portal,16 the Danish Data Archive,17 and the Swedish National Data
Service.18 In a technical report, we describe the evaluation in further detail
for each vocabulary, queried SPARQL endpoint, and constraint [138]. Fur-
thermore, we have published the evaluation results19 for each QB data set in
form of one document per SPARQL endpoint.

Since the validation of each of the 81 constraint types can be implemented
using SPARQL, we use SPIN, a SPARQL-based way to formulate and check
constraints, as basis to develop a validation environment to validate RDF
data according to constraints expressed by arbitrary constraint languages. The
validation environment can directly be used to validate arbitrary RDF data
according to constraints extracted from the three vocabularies.20 Additionally,
own constraints on any vocabulary can be defined using several constraint
languages.

The SPIN engine checks for each resource if it satisfies all constraints,
which are associated with its assigned classes, and generates a result RDF
graph containing information about all constraint violations. There is one
SPIN construct template for each constraint type. A SPIN construct template
contains a SPARQL CONSTRUCT query which generates constraint violation
triples indicating the subject and the properties causing constraint violations
and the reason why constraint violations have been raised. A SPIN construct
template creates constraint violation triples if all triple patterns within the
SPARQL WHERE clause match.

9.2.2 Evaluation Results and Formulation of Findings

Tables 9.2 and 9.3 show the results of the evaluation, more specifically the
numbers of constraints and constraint violations, which are caused by these
constraints, in percent; whereas the numbers in the first line indicate the
absolute amount of constraints and violations. The constraints and their raised
violations are grouped by vocabulary, which type of language the types of the
constraints are formulated with, and their severity level.

The numbers of validated triples and data sets differ between the vocab-
ularies as we validated 3.8 billion QB, 480 million SKOS, and 10 million
DDI-RDF triples. To be able to formulate findings which apply for all vocab-
ularies, we only use normalized relative values representing the percentage of
constraints and violations belonging to the respective sets.

There is a strong overlap between RDFS/OWL and Constraint Language
Based constraint types as in many cases constraint types are expressible by
RDFS/OWL and classical constraint languages. This is the reason why the

16 http://dwb-dev.nsd.uib.no/portal
17 https://www.sa.dk/en/services/danish-data-archive
18 http://snd.gu.se/en
19 Evaluation results on GitHub
20 Vocabulary implementations on GitHub

http://dwb-dev.nsd.uib.no/portal
https://www.sa.dk/en/services/danish-data-archive
http://snd.gu.se/en
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percentage values of constraints and violations grouped by the classification
of constraint types according to the expressivity of constraint language types
do not accumulate to 100%.

Table 9.2. Evaluation Results (1)

DDI-RDF QB
C CV C CV
78 3,575,002 20 45,635,861

SPARQL 29.5 34.7 60.0 100.0
CL 64.1 65.3 40.0 0.0
RDFS/OWL 66.7 65.3 40.0 0.0
info 56.4 52.6 0.0 0.0
warning 11.5 29.4 15.0 99.8
error 32.1 18.0 85.0 0.3

C (constraints), CV (constraint violations)

Table 9.3. Evaluation Results (2)

SKOS Total
C CV C CV
17 5,540,988 115 54,751,851

SPARQL 100.0 100.0 63.2 78.2
CL 0.0 0.0 34.7 21.8
RDFS/OWL 0.0 0.0 35.6 21.8
info 70.6 41.2 42.3 31.3
warning 29.4 58.8 18.7 62.7
error 0.0 0.0 39.0 6.1

C (constraints), CV (constraint violations)

Almost 2/3 of all constraints, nearly 1/3 of the DDI-RDF, 60% of the QB,
and all SKOS constraints are SPARQL Based. For well-established vocabu-
laries, the most formulated constraints are SPARQL Based (80%). For newly
developed vocabularies, however, the most expressed constraints are RDF-
S/OWL Based (2/3). Nearly 80% of all violations are caused by SPARQL,
1/5 by Constraint Language, and 1/5 by RDFS/OWL Based constraints.

Finding 1 The facts that 80% of all violations are raised by SPARQL Based
constraints and that 2/3 of all constraints are SPARQL Based, increases the
importance to formulate constraints, which up to now can only be expressed
in SPARQL, using high-level constraint languages. Data quality can be sig-
nificantly improved when suitable constraint languages are developed which
enable to define SPARQL Based constraints in an easy, concise, and intuitive
way. Thereby, the more elaborate a vocabulary is, the more sophisticated and
complex constraints are specified using SPARQL.

These constraints are of such complexity that up to now in most cases
they can only be expressed by plain SPARQL. It should be an incentive for
language designers to devise languages which are more intuitive than SPARQL
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in a way that also domain experts, which are not familiar with SPARQL, can
formulate respective constraints.

Finding 2 The fact that only 1/5 of all violations result from RDFS/OWL
Based constraints, even though more than 1/3 of all constraints are RDF-
S/OWL Based, indicates good data quality for all vocabularies with regard to
their formal specifications.

Finding 3 As more than 1/3 of all constraints are RDFS/OWL Based, the
first step to make progress in the further development of constraint languages
is to cover the constraint types which can already be formulated using RDFS
and OWL.

While 2/3 of the DDI-RDF violations result from RDFS/OWL Based con-
straints, QB and SKOS violations are only raised by SPARQL Based con-
straints.

Finding 4 For well-established vocabularies, RDFS/OWL Based constraints
are almost completely satisfied which generally indicates very impressive data
quality, at least in the SBE domain and for the basic requirements. For newly
developed vocabularies, however, data quality is poor as RDFS/OWL Based
constraints are not fulfilled.

For DDI-RDF, data providers still have to understand the vocabulary and
of course data cannot have high quality if the specification is not yet stable. It
is likely that a newly developed vocabulary is still subject of constant change
and that early adopters did not properly understand its formal specification.
Thus, published data may not be consistent with the current draft of its
conforming vocabulary.

When vocabularies under development turn into well-established ones,
data providers are experienced in publishing their data in conformance with
these vocabularies and formal specifications are more elaborated. As a conse-
quence, RDFS/OWL Based constraints are satisfied to a greater extend which
leads to better data quality.

The reason why we only defined SPARQL Based constraints on SKOS for
assessing the quality of thesauri is that literature and practice especially con-
centrate on evaluating graph-based structures of thesauri by applying graph-
and network-analysis techniques which are of such complexity that they can
only be implemented in SPARQL.

Almost 40% of all constraints are error, more than 40% are informational,
and nearly 20% are warning constraints. Informational constraints caused
approximately 1/3 and warning constraints narrowly 2/3 of all violations.

Finding 5 Although 40% of all constraints are error constraints, the percent-
age of severe violations is very low, compared to about 2/3 of warning and 1/3
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of informational violations. This implies that data quality is high with regard
to the severity level of constraints and that proper constraint languages can
significantly improve data quality beyond fundamental requirements.

We did not detect violations of error constraints for well-established vo-
cabularies, even though 85% of the QB constraints are error constraints. More
than 50% of the DDI-RDF constraints and more than 70% of the SKOS con-
straints are informational constraints. 1/6 of the DDI-RDF violations are
caused by error constraints and almost all QB and 59% of the SKOS viola-
tions are caused by warning constraints.

Finding 6 For well-established vocabularies, data quality is high as serious
violations rarely appear (0.3% for QB). For newly developed vocabularies, how-
ever, data quality is worse as serious violations occur partially (1/6 for DDI-
RDF).

Especially for vocabularies under development, constraint languages should
be used to a larger extend in addition to RDFS/OWL in order to define ap-
propriate constraints to detect and solve severe violations.

80% of the violations, which are raised by either RDFS/OWL or Constraint
Language Based constraints, are caused by constraints with the severity level
informational (see Table 9.4) and almost all (94%) of the violations, which
are caused by SPARQL Based constraints, are raised by warning constraints.
Approximately 1/2 of all constraints are informational constraints regard-
less how their types are classified according to the expressivity of constraint
language types.

Table 9.4. Constraints and Violations by Language Type and Severity

RDFS/OWL CL SPARQL
C CV C CV C CV

info 52.5 79.64 55.2 79.60 45.1 4.39
warning 18.0 20.28 15.5 20.27 19.6 94.17
error 29.5 0.08 29.3 0.13 35.3 1.43

C (constraints), CV (constraint violations)

Finding 7 Whatever language is used to formulate constraints, 1/2 of all
constraints are informational, 1/3 are error, and 1/5 are warning constraints.

The fact, that regardless of the language used to specify constraints, 1/2
of all constraints are informational indicates the importance that constraint
languages support constraints on multiple levels. Constraints are by far not
only used to prevent certain usages of a vocabulary, they are rather needed
to provide better guidance for improved interoperability.

Finding 8 Regardless of the type of the used language, there are only a few
violations raised by error constraints which stands for good data quality in
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general. In contrast, constraints of low severity, expressible by RDFS/OWL
or high-level constraint languages, are violated to a large extent (80%), whereas
more serious warning constraints, only expressible by SPARQL, are violated
to an even larger extend (94%).

94% of the violations caused by SPARQL Based constraints are warnings,
which means that data quality could be significantly improved when solving
these quite serious violations. We claim that this is more likely when these
SPARQL Based constraints are not only expressible by plain SPARQL but
also by high-level constraint languages enabling to formulate such constraints
in a more intuitive and concise way.

9.3 Conclusion

We captured 115 constraints on three different vocabularies commonly used
within the social, behavioral, and economic (SBE) sciences (DDI-RDF, QB,
and SKOS), either from the vocabularies themselves or from several domain
experts, and classified them based on by which of the three types of constraint
languages (RDFS/OWL Based, Constraint Language Based, and SPARQL
Based) their constraint types can be expressed.

In addition, we let the domain experts classify each constraint according
to the severity of its violation. Although we provide default severity levels
for each constraint, validation environments should enable users to adapt the
severity levels of constraints according to their individual needs. We simplify
the classification system of log messages in software development and differ-
entiate between the three severity levels informational, warning, and error.

By validating against these constraints, we evaluated the data quality of
15,694 data sets (4.26 billion triples) of SBE research data, obtained from 33
SPARQL endpoints. This way, we gain a better understanding about the role
of certain constraint types for assessing the quality of RDF data and therefore
the usability of identified constraint types for determining RDF data quality.

Based on the evaluation results, we formulated several findings to direct the
further development of constraint languages. The general applicability of these
findings, however, is still to be confirmed beyond the examined vocabularies
and for other domains. The main findings are:

1. Data quality can be significantly improved when suitable constraint lan-
guages are developed enabling to define constraints - which up to now can
only be expressed by plain SPARQL - in an easy, concise, and intuitive
way. Thereby, the more elaborate a vocabulary is, the more sophisticated
and complex constraints are necessary, which in most cases can only be
specified in SPARQL.

2. As only 1/5 of all violations result from constraints which are expressible
in RDFS or OWL, even though 1/3 of all constraints are representable in
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RDFS/OWL, data quality is high for all vocabularies with regard to their
formal specifications.

3. Although 40% of all constraints are associated with the severity level error,
the percentage of severe violations is very low - compared to about 2/3 of
warning and 1/3 of informational violations. This implies that data quality
is high with regard to the severity of constraints and that proper constraint
languages can significantly improve data quality beyond fundamental re-
quirements.

4. Whatever language is used to formulate constraints, 1/2 of all constraints
are informational, 1/3 are error, and 1/5 are warning constraints. This
fact emphasizes the importance that constraint languages support multiple
levels of severity.

5. Violations caused by constraints representable by RDFS/OWL or high-
level constraint languages are of low severity, whereas the violation of
constraints, only expressible in SPARQL, is more serious. This is the rea-
son why there is a significant demand for high-level constraint languages
that support the expression of constraints which up to now can only be
formulated by plain SPARQL.
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Discussion

In this chapter, we summarize the main contributions and limitations of this
thesis based on how the research questions are answered, present an outlook
on upcoming research directions, and finally conclude this work.

10.1 Contributions and Limitations

Research Question 1 Which types of research data and related metadata
are not yet representable in RDF and how to adequately model them to be able
to validate RDF data against constraints extractable from these vocabularies?

The social, behavioral, and economic (SBE) sciences require high-quality
data for their empirical research. There are different types of research data
and related metadata. We define each of these types as stated by data pro-
fessionals, delineate their transition in the research data lifecycle, and show
which RDF vocabularies are commonly used to represent them.

Contribution 1 Development of three RDF vocabularies (1) to represent all
types of research data and related metadata in RDF and (2) to validate RDF
data against constraints extractable from these vocabularies

Because of the lack of appropriate vocabularies, however, just a few of
these types are expressible in RDF. We have developed three vocabularies
(1) to represent all types of research data and its metadata in RDF and
(2) to validate RDF data according to constraints extractable from these
vocabularies (see Chapter 3):

• The DDI-RDF Discovery Vocabulary (DDI-RDF) [42] supports the dis-
covery of metadata on unit-record data, the type of data most often used
in research within the SBE sciences, i.e., data collected about individuals,
businesses, and households. It can be applied to research data from many
different domains, rather than being specific to a single set of domain
data. DDI-RDF is based on a metadata standard, composed of almost
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twelve hundred metadata fields, known as the Data Documentation Ini-
tiative (DDI) [95], an XML format to disseminate, manage, and reuse
data collected and archived for research.

• Physical Data Description (PHDD) [321] is a vocabulary to describe data
in tabular format and its physical properties. The data could either be
represented in form of records with character-separated values (CSV) or
with fixed length.

• The SKOS Extension for Statistics (XKOS) [84] is a vocabulary to de-
scribe the structure and textual properties of formal statistical classifi-
cations as well as relations between classifications and concepts, and to
introduce refinements of SKOS semantic properties to allow the use of
more specific relations between concepts.

Research Question 2 How to directly validate XML data on semantically
rich OWL axioms using common RDF validation tools when XML Schemas,
adequately representing particular domains, have already been designed?

Data practitioners of many domains still represent their data in XML, but
expect to increase the quality of their data by using common RDF valida-
tion tools. In order to be able to directly validate XML against semantically
rich OWL axioms when using them in terms of constraints and extracting
them from XML Schemas properly describing conceptual models about data
of certain domains, we propose on formal logics and the XML Schema (XSD)
meta-model based automatic transformations of arbitrary XSDs and conform-
ing XML documents into OWL ontologies and corresponding RDF data (see
Chapter 4). This does not cause any additional manual effort as these con-
straints have already been defined within underlying XSDs. Semantically rich
OWL axioms against which XML data can directly be validated are (1) sub-
class relationships, (2) OWL hasValue restrictions on data properties, and (3)
OWL universal restrictions on object properties.

Contribution 2 Direct validation of XML data using common RDF val-
idation tools against semantically rich OWL axioms extracted from XML
Schemas properly describing certain domains

OWL axioms are extracted out of XSDs either (1) explicitly according
to XSD constructs determining the syntactic structure of sets of XML docu-
ments or (2) implicitly according to the implicit semantics of XSD constructs.
To model explicit and implicit semantics in a semantically correct way, we
formally underpin transformations themselves on semantically rich OWL ax-
ioms for which Description Logics with its well-studied theoretical properties
provides the foundational basis.

As structures of XSDs may be quite complex, we base these transforma-
tions on the XSD meta-model and map each of its constructs to suitable
axioms of an OWL TBox. This enables to translate arbitrary complex struc-
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tures of XSDs into OWL using identical transformation rules and therefore
ensures that any XSD can be converted without any information loss.

As XSDs are commonly used to specify structural relationships of objects
in data-centric XML documents, we preserve all the structural information of
XSD constructs. We adequately model the complete syntactic relationships of
XSD components and fully appreciate how components relate to other ones
on all three levels of instance, schema and meta-model.

Generated ontologies are not directly as useful as manually created do-
main ontologies as they are not conform to the highest quality requirements
of more sophisticated domain ontologies regarding the intended semantics of
given domains, since XSDs only transport information about (1) the syntactic
structure of sets of XML documents, (2) the terminology of individual do-
mains, and (3) implicit semantics of XSD constructs with limited capabilities.
By automatically deriving domain ontologies out of these generated ontologies
using manually defined SWRL rules, however, we (1) reduce the complexity
of generated ontologies and thus underlying XSDs and (2) further supplement
OWL axioms with additional domain-specific semantic information not or not
satisfyingly covered by XSDs.

By means of a complete case study, we applied the proposed approach and
derived DDI-RDF to demonstrate a fast way to disseminate the huge amount
of already existing XSDs and XML documents of the commonly accepted and
widely adopted XML standards DDI-Codebook and DDI-Lifecycle.

By evaluating the suggested approach, we verified the hypothesis that the
effort and the time needed to deliver high quality domain ontologies from
scratch by reusing information of already existing XSDs properly describing
certain domains is much less than creating domain ontologies completely man-
ually and from the ground up. The resulting domain ontologies are as usable
as ontologies that are completely constructed by hand, but with a fraction of
necessary effort.

The first step is to transform XSDs into OWL ontologies. To prove the
generality of these transformations, we show that any XSD can be converted
to OWL by executing generic test cases created out of the XSD meta-model.
In addition, we converted XSDs of six widely known, accepted, and used
XML standards from the academic (i.a., DDI-Lifecycle) and industrial field.
The second step is to define SWRL rules to derive domain ontologies. We
specified SWRL rules for three domain ontologies - two from the industrial
and one from the academic area. To verify the hypothesis, we determined the
effort and expenses for (1) the traditional manual and (2) the suggested semi-
automatic approach. DDI-RDF serves as domain ontology, since we were part
of the process creating it manually from scratch.

Limitation 1 XML Schemas must adequately represent particular domains
in a syntactically and semantically correct way

The suggested approach is not suitable when existing XSDs do not prop-
erly describe the conceptual model about data of a specific domain in a syn-
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tactically and semantically correct manner: (1) syntactically according to the
syntactic structure of sets of XML documents and (2) semantically regarding
the terminology of the domain and the implicit semantics of XSD constructs.

Research Question 3 Which types of constraints must be expressible by
constraint languages to meet all collaboratively and comprehensively identified
requirements to formulate constraints and validate RDF data?

Our work is supposed to create a stable foundation for subsequent ac-
tivities in the working groups on RDF validation. We propose to relate ex-
isting solutions to case studies and use cases by means of requirements, ex-
tracted from the latter and fulfilled by the former. We therefore collected
the findings of the RDF Validation Workshop and the working groups and
initiated a community-driven database of requirements to formulate con-
straints and validate RDF data against constraints. Additionally, we added
requirements from other sources, particularly in the form of constraint types
that are supported by existing approaches, e.g., those expressible in OWL 2.
The intention of this database is to collaboratively collect case studies pro-
vided by various data institutions, use cases, requirements, and solutions in
a comprehensive and structured way. The database is publicly available at
http://purl.org/net/rdf-validation, continuously extended, and open for fur-
ther contributions.

Laying the ground on case studies collected from many data practitioners
and relating solutions to case studies and use cases by means of requirements,
makes sure that (1) commonly approved requirements cover real world needs
of data professionals having RDF validation related problems and (2) the
further development of constraint languages is based on universally accepted
requirements.

By today, we have published 81 types of constraints that are required by
various stakeholders for data applications and which form the basis of this the-
sis. Each constraint type, from which concrete constraints are instantiated to
be checked on the data, corresponds to a specific requirement in the database
(see Chapter 5).

Contribution 3 Publication of 81 types of constraints that must be expressible
by constraint languages to meet all jointly and extensively identified require-
ments to formulate constraints and validate RDF data against constraints

We used this collection of constraint types to gain a better understanding
of the expressiveness of existing and currently developed solutions, i.e., to
evaluate to which extent each requirement is fulfilled by the most common
constraint languages, identify gaps that still need to be filled, recommend
possible solutions for their elimination, and give directions for the further
development of constraint languages.

http://purl.org/net/rdf-validation
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Research Question 4 How to ensure for any constraint type that (1) RDF
data is consistently validated against semantically equivalent constraints of the
same constraint type across RDF-based constraint languages and (2) seman-
tically equivalent constraints of the same constraint type can be transformed
from one RDF-based constraint language to another?

There is not a one-size-fits-all solution: none of the solutions, we consider
as high-level constraint languages, is able to meet all requirements raised by
data practitioners, i.e., enables to express each of the 81 identified constraint
types.

High-level constraint languages like ShEx, ReSh, DSP, OWL, and SHACL
either lack an implementation to actually validate RDF data against con-
straints expressed in these languages or are based on different implementa-
tions, which leaves the question how RDF-based constraint languages can be
executed on RDF data in a consistent way.

The overall idea is that we see constraint languages as domain-specific
languages that are translated into SPARQL and executed on RDF data. We
use SPIN, a SPARQL-based way to formulate and check constraints, as ba-
sic validation framework and present a general approach how the validation
of RDF data against constraints of any constraint type can be consistently
implemented regardless of the language used to express them (see Chapter 6).

Contribution 4-1 Consistent validation across RDF-based constraint lan-
guages

We propose to use SPARQL as low-level implementation language: con-
straint types are transformed into SPARQL queries executable to validate
RDF data against constraints instantiated from these constraint types. We
claim and provide evidence from literature that constraints of each con-
straint type expressed in any RDF-based language can be checked with plain
SPARQL as execution language.

The translation of a constraint language into SPARQL queries is done once,
for instance, by the language designer, and provided in form of a SPIN map-
ping. The mapping from a constraint language to SPIN is performed by creat-
ing SPIN construct templates representing SPARQL CONSTRUCT queries
in RDF - one for each constraint type that is supported by the language.
SPIN construct templates generate constraint violation triples indicating the
subjects, the properties, and the constraints causing the violations and the
reasons why violations have been raised. In addition, we may give some guid-
ance how to become valid data and to indicate how severe the violation of a
constraint is, we may classify constraints according to different levels of sever-
ity like informational, warning, and error. Representing constraint violations
and therefore validation results in RDF enables to process them further.

We have developed a validation environment which is online available at
http://purl.org/net/rdfval-demo and which can be used to validate RDF data
on constraints of any type expressed in arbitrary RDF-based constraint lan-

http://purl.org/net/rdfval-demo
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guages. The SPIN engine checks for each resource if it satisfies all constraints,
which are associated with the classes the resource is assigned to, and generates
a result RDF graph containing information about all constraint violations.

To demonstrate the general applicability of the approach, we completely
implemented the validation of RDF data against all OWL 2 and DSP lan-
guage constructs by mapping each of them to SPIN. Furthermore, we provide
implementations for all constraint types which are expressible in OWL 2 and
DSP as well as for major constraint types representable by ReSh and ShEx.

We generalize from our experience implementing high-level constraint lan-
guages and gained from the analysis of the identified constraint types and
introduce a general framework, an abstraction layer that enables to formu-
late constraints of any constraint type in a way that mappings from high-level
constraint languages to the intermediate generic representation can be created
straight-forwardly. The framework reduces the representation of constraints to
the absolute minimum, is based on formal logics, and consists of a very sim-
ple conceptual model with a small lightweight vocabulary and constraining
elements (see Chapter 7).

Contribution 4-2 Minimal representation of constraints of any type

Even with an upcoming W3C recommendation for a new constraint lan-
guage, it can be expected that several languages will be used in practice
in future – consider the situation in the XML world, where a standardized
schema language was available from the beginning and yet additional ways to
formulate and check constraints have been created. Therefore, semantically
equivalent constraints of the same constraint type represented in different
languages will exist.

Even though SPIN provides a convenient way to represent constraint viola-
tions and to validate RDF data, the implementation of a high-level constraint
language still requires a tedious mapping to SPIN with a certain degree of
freedom how constraints of a certain type are checked and how violations of
constraints of a particular type are represented.

Our framework therefore provides a common ground that is solely based
on the abstract definitions of constraint types. By providing just one SPIN
mapping for each constraint type, it is ensured that the details of the SPIN
implementation are consistent irrespective of the language and that the vali-
dation against semantically equivalent constraints of the same constraint type
leads always to exactly the same results independently of the language used to
express them. This means that whenever semantically equivalent constraints
in different languages are checked on RDF data they point out the same set
of violations.

Contribution 4-3 For any constraint type, RDF data is consistently validated
against semantically equivalent constraints of the same constraint type across
RDF-based constraint languages
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As there is no standard way to define constraints, semantically equiva-
lent constraints of the same type are expressible by a variety of constraint
languages - each of them different in syntax and semantics. Mappings from
constraint languages to the abstraction layer and back enable transformations
of semantically equivalent constraints of the same type from one constraint
language to another via the intermediate representation, hence increase the
interoperability of constraint languages. With an intermediate generic repre-
sentation, we only need to define 2n mappings for each constraint type and
not n � pn� 1q mappings, i.e., for each constraint type and each possible com-
bination of n constraint languages.

Contribution 4-4 For any constraint type, semantically equivalent con-
straints of the same constraint type can be transformed from one RDF-based
constraint language to another

By providing just one SPIN mapping for each constraint type indepen-
dently of concrete languages, the implementation of constraint types is simpli-
fied for existing and newly developed constraint languages. All that is needed
to reuse consistent implementations of constraint types is to define bidirec-
tional mappings.

With this implementation, there are two obvious limitations of our ap-
proach. The first limitation is that constraint language constructs and con-
straints must be representable in RDF in order to be able to provide imple-
mentations for their constraint types and to validate RDF data according to
them within our validation environment. Nevertheless, for each of the 81 pub-
lished constraint types, instantiated constraints can be represented in RDF.

Limitation 2 Constraints of supported constraint types and constraint lan-
guage constructs must be representable in RDF

To consistently execute RDF-based constraint languages, it is required that
they can be expressed in SPARQL, i.e., the actual checking of constraints of
each constraint type the language supports must be expressible in form of
a SPARQL query. For SHACL, OWL 2, ShEx, DSP, and ReSh, this is the
case, but in the future, we would like to support non-RDF based languages as
well. It is not necessarily a problem that languages have to be expressible in
SPARQL, as the data and the data models are represented in RDF, so this is
consistent. As case studies, use cases, and requirements are still collected, it is
likely that the list of the up to now 81 constraint types will be expanded. But
even if there are constraint types that cannot be translated into SPARQL,
the subset of supported constraint types is certainly large enough to justify
the limitation to SPARQL-expressible constraint types.

Limitation 3 Constraint languages and supported constraint types must be
expressible in SPARQL



216 10 Discussion

Research Question 5 What is the role reasoning plays in practical data
validation and for which constraint types reasoning may be performed prior to
validation to enhance data quality?

The set of constraint types forms the basis to investigate the role that
reasoning and different semantics play in practical data validation and how to
overcome the major shortcomings when validating RDF data by performing
reasoning prior to validation (see Chapter 8). Reasoning is beneficial for RDF
validation as (1) it may resolve constraint violations, (2) it may cause valuable
violations, and (3) it solves the redundancy problem.

We investigated the effect of reasoning to the validation process for each
constraint type, i.e., we examined for each constraint type if reasoning may
be performed prior to validation to enhance data quality either by resolving
violations or by raising valuable violations and solving them. For more than
2/5 of the constraint types, reasoning may be performed to improve data
quality. For less than 3/5 of the constraint types, however, reasoning cannot
be done or does not improve data quality in any obvious sense.

For reasoning constraint types, different types of reasoning - OWL 2 QL
and OWL 2 DL reasoning - may be performed which depends on the lan-
guage used to formulate the constraint type. We consider these OWL 2 sub-
languages, as they differ with regard to expressivity and efficiency in perfor-
mance.

We examined the effects of reasoning on the performance, i.e., the com-
putational complexity of constraint types. Therefore, we investigated for each
constraint type how efficient in terms of runtime validation is performed with
and without reasoning. By mapping to Description Logics we get an idea of the
performance for each constraint type in worst case, since the combination of
Description Logics constructs needed to express a constraint type determines
its computational complexity.

Validation and reasoning assume different semantics which may lead to
different validation results when applied to particular constraint types. Thus,
we investigated for each constraint type (1) if it depends on the CWA and (2)
if it depends on the UNA. For the majority of the constraint types, it makes
a difference in terms of validation results. For these constraint types, we have
to be careful in case we want to use them for reasoning and for validation.

Contribution 5 We delineate the role reasoning plays in practical data val-
idation and investigated for each constraint type (1) if reasoning may be per-
formed prior to validation to enhance data quality, (2) how efficient in terms
of runtime validation is performed with and without reasoning, and (3) if val-
idation results depend on different underlying semantics.

By revealing which languages do not cover certain constraint types for
which reasoning can be done to enhance data quality, we emphasize the signif-
icant role SPIN and OWL 2 DL play for the future development of constraint
languages.
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Evaluation

A concrete constraint is instantiated from a constraint type and defined for a
specific vocabulary. We collected 115 constraints on three vocabularies com-
monly used in the SBE sciences (DDI-RDF, QB, SKOS), either from the vo-
cabularies themselves or from several domain experts, and set up a large-scale
evaluation to gain a better understanding about the role of certain constraint
types for determining the quality of RDF data and thus to evaluate the us-
ability of constraint types for assessing RDF data quality (see Chapter 9).

Contribution 6 Evaluation of the Usability of Constraint Types for Assessing
RDF Data Quality

We classified these constraints based on which types of constraint lan-
guages enable to express their constraint types, i.e., whether their type is
representable by RDFS/OWL, common high-level constraint languages, or
only by plain SPARQL. Furthermore, based on the classification system of
log messages in software development, we let the domain experts classify the
constraints with regard to the perceived severity of their violation.

We conducted a large-scale experiment and evaluated the data quality of
15,694 data sets (4.26 billion triples) of SBE research data, obtained from
33 SPARQL endpoints, by validating the data against these 115 constraints.
As the evaluation is based on only three vocabularies, we cannot make valid
general statements for all vocabularies, but we can formulate several findings
and make recommendations to direct the further development of constraint
languages. If the findings hold generally for all vocabularies is still to be de-
termined, nevertheless they provide valuable insights for future developments
in this field.

Limitation 4 The generality of the findings of the large-scale evaluation has
to be proved for all vocabularies

10.2 Future Work

Vocabularies for Representing Research Data and its Metadata

Within two public review phases in 2014 and 2016 for two months in each
case, we received valuable feedback on the newly developed vocabularies from
members of the Linked Data community, the SBE sciences, the statistical do-
main, as well as DDI experts and implementers. In the middle of the year 2016,
we plan to publish the vocabularies as official DDI Alliance specifications. As
there is already a W3C recommendation for QB, discussions are ongoing to
work on a respective W3C recommendation for DDI-RDF.

The interplay of DDI-RDF, QB, and PROV-O needs further exploration
regarding the relationship of aggregated data, aggregation methods, and the
underlying unit-record data. The goal is to drill down to related unit-record



218 10 Discussion

data based on a search resulting in aggregated data. A researcher could then
analyze the unit-record data to answer further research questions.

Experiences with DDI-RDF have led to a broader set of requirements
which will be met by DDI-Lifecycle MD, the model-driven further develop-
ment of the DDI standard itself (see Section 3.2). As members to the DDI
Moving Forward Project, we will contribute formalizing the conceptual model
and implementing diverse model serializations, first and foremost RDFS and
OWL. DDI-Lifecycle MD will incorporate the results of ongoing work which
focuses on the early phases of survey design and data collection as well as on
other data sources like register data. DDI has its strengths in the domain of
SBE research data, but will be opened to data of other disciplines as well.

As PHDD and CSV on the Web (CSVW) [302] have an overlap in the main
description of tabular data in CSV format, efforts should be made aligning
these specifications. Nevertheless, the scope of PHDD is broader, since com-
pared to CSVW, PHDD can also be used to describe tabular data with fixed
record length and with multiple records per case. Both, PHDD and CSVW
will be evaluated for the work on data description in DDI-Lifecycle MD.

RDFication of XML Enabling to use RDF Validation Technologies

We will complete our XSLT framework generating OWL ontologies stylesheet-
driven out of XSDs by developing an XSLT which translates XML documents
directly without XSDs. The first step is to create suitable XSDs out of XML
documents. These XSDs will then be converted to OWL in a second step.

We generalize from XSD meta-model based uni-directional transforma-
tions from XSD models into OWL models to bidirectional transformations
between models of any meta-model such as OWL 2, XSD, relational database
schemas, Java, and UML 2 (see Section 2.3). Meta-model based transforma-
tions of arbitrary models to OWL models enable to convert any data to RDF
and to validate any data according to constraints extractable from models of
arbitrary meta-models using common RDF validation tools.

QVT can be used to define transformation models describing transfor-
mations between source and target models of any meta-model. Instead of
transforming models directly on the model level, model transformations are
specified on the meta-model level using meta-model constructs and semantics.
By defining transformations on a higher meta-level, model transformations do
not depend on the converted models. They only depend on the involved meta-
models which enables an elegant description of the transformation.

EMF provides a basic framework for the model-driven engineering of soft-
ware systems which supports MOF-based meta-modeling. As part of EMF,
ecore has emerged as the de facto standard for the definition of meta-models
and therefore serves as meta-meta-model to specify arbitrary meta-models.
Prerequisite for performing meta-model based model transformations is to
represent meta-models and models as direct and indirect instances of the
ecore meta-meta-model. There are multiple MOF-based meta-models which



10.2 Future Work 219

are already represented conforming to ecore, such as OWL 2, XSD, and UML
2. As model transformations are defined by means of the abstract syntax in-
stead of concrete syntaxes of a language, they become independent of any
particular representation and transformations do not have to be defined for
each concrete syntax.

We started focusing on unidirectional transformations of XSD models into
OWL models based on the XSD meta-model. By means of the generalized
meta-model based model transformations, we are able to define transforma-
tions between models of any meta-model in both directions. After transfor-
mations, it is likely that source and target models change independently from
each other on both the schema and the instance level. Thus, it is necessary
to synchronize source and target models and their instances continuously. We
achieve round tripping by defining mappings between source and target meta-
model constructs. After automatically performed round tripping, we do not
have to adapt source and target models according to changes of the respective
other side manually on the schema and the instance level.

DDI-RDF, DDI-Codebook, and DDI-Lifecycle may serve as case studies to
(1) convert XSD to OWL models, (2) translate XML into RDF corresponding
to these models, and (3) validate XML on constraints extracted from OWL
models. DDI-Lifecycle MD may be used as case study to (1) translate UML
models into models of multiple meta-models on the schema and the instance
level and (2) validate UML model instances according to UML model con-
straints when representing them as OWL axioms.

RDF Validation Requirements and Constraint Types

To underpin its importance as a tool for the advancement of constraint for-
mulation and RDF data validation, we will maintain and continuously extend
the RDF validation database within the context of the DCMI and the W3C
working groups. We will also continue to identify and publish jointly approved
requirements and corresponding constraint types to ensure that the further
development of constraint languages is based on commonly accepted require-
ments as well as case studies and use cases collaboratively collected by various
data practitioners. Within the DCMI working group, we pursue the establish-
ment of application profiles that allow to link constraints directly to published
data sets and ontologies.

Validation Framework for RDF-based Constraint Languages

Based on our experiences providing full implementations for all OWL 2 and
DSP constructs and for all constraint types expressible in OWL 2 and DSP,
our next steps include the application of the suggested approach to further
RDF-based constraint languages, first and foremost ShEx and ReSh, for which
we already implemented major constraint types.
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To be able to offer implementations for constraint languages within our val-
idation environment, it is mandatory that they can be expressed in SPARQL,
i.e., the actual checking of constraints of each constraint type the language
supports must be expressible in form of a SPARQL query, which excludes
many existing solutions. We will further investigate ways to provide map-
pings to SPIN, not only for languages expressible in SPARQL but also for
non-RDF based constraint languages. Another interesting topic is an auto-
matic testing of SPIN mappings, for which test data together with expected
outcomes could be provided in a certain form.

It is part of future work to (1) finalize the consistent implementations for
the generic representations of all constraint types, (2) integrate these SPIN
mappings in our validation environment which allows users to generically ex-
press constraints of each type, (3) fully map constraint languages to the ab-
straction layer and back enabling transformations of semantically equivalent
constraints across these languages, and of course (4) keep the framework and
the constraining elements as its core building blocks in sync with the ongoing
work in the working groups.

In the majority of cases, domain experts are not capable to express con-
straints they have in mind using common constraint languages. Because of
this, computer scientists or even language designers have to help them defining
suitable constraints in languages satisfying their individual needs. In contrast,
domain experts are mostly able to represent valid data in RDF, for example,
in form of the intuitive and concise concrete RDF Turtle syntax. Therefore,
we will investigate ways to follow a reverse engineering approach by automat-
ically generating constraints in the generic intermediate representation out of
valid RDF data.

In Section 7.4, we sketched how the framework can be combined with the
upcoming W3C recommendation SHACL. As SHACL is still under constant
development, the subsequent points are obviously part of future work:

• Derive SHACL extensions with SPARQL bodies for each constraint type
not supported by SHACL out of the generic intermediate representation of
constraint types and their SPIN mappings including the SPARQL queries
to actually check instantiated constraints.
• Enhance the interoperability between SHACL and other high-level con-

straint languages by defining mappings from SHACL to the abstraction
layer and back for each constraint type SHACL supports. This enables
transformations of semantically equivalent constraints of the same type
between SHACL and other languages.
• Continuously synchronize the implementations of constraint types (1) we

generically offer within our framework and (2) SHACL provides. This way,
the consistency of the implementations of constraint types among SHACL
and other languages is maintained and therefore it is ensured that the
validation of RDF data against semantically equivalent constraints of the
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same type in different languages leads always to exactly the same results
- independently of the language used to express these constraints.

The Role of Reasoning for RDF Validation

We will extend our validation environment to provide a list of languages for
which the constraint type specific expressivity is sufficient depending on users’
individual needs. The validation environment may also recommend one of
these languages covering the most of the required constraint types with the
lowest for the user acceptable complexity class determining how efficient in
terms of runtime validation is performed. As reasoning may cause high com-
plexity, the validator may show which constraint types from the users’ se-
lections cause the higher complexity class and may provide solutions how to
get to the next lower class. It would be charming to have an estimation which
group of constraint types demands which complexity class. This is not an easy
question, however, since complexity results are language specific and opera-
tional semantics is involved as well. Therefore, it is hard to maintain a general
complexity result for a constraint type independent of the language chosen.
Yet, providing an estimation for particular cases can still be straightforward.

Evaluating the Usability of Constraint Types for Assessing RDF
Data Quality

To evaluate the usability of constraint types for determining the quality of
RDF data, we evaluated the quality of 15,694 data sets (4.26 billion triples) of
research data by validating against constraints on three vocabularies. Despite
the large volume of the evaluated data sets in general, we have to keep in
mind that the evaluation is based on only three vocabularies. Even though we
can formulate several findings and make recommendations to direct the future
development of constraint languages, we cannot make valid general statements
for all vocabularies. As these findings cannot be proved yet, they still have to
be verified or falsified by evaluating the quality of RDF data conforming to
further well-established and newly developed vocabularies.

10.3 Conclusion

For constraint formulation and RDF data validation, several languages exist or
are currently developed. Even with an upcoming W3C recommendation for a
new constraint language, it can be expected that several languages will be used
in practice – consider the situation in the XML world, where a standardized
schema language was available from the beginning and yet additional ways to
specify and check constraints have been created.

As the application of constraint languages per se improves data quality,
it must be proceeded working intensively on their enhancement. We are ac-
tively involved in the further development and implementation of constraint
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languages and will incorporate the findings of this thesis into the DCMI and
W3C working groups on RDF validation to set priorities on features where we
expect the highest impact on the data quality of real-life data in the social,
behavioral, and economic sciences and the cultural heritage sector.

The intention of this thesis is to provide a scientifically sound, practice-
oriented, and sustainable basis for continued research in the field of RDF
validation and the development of constraint languages.

Constraints expressed in common constraint languages are extractable out
of RDF vocabularies and XML Schemas. This is the reason why (1) we have
developed three missing vocabularies to represent all types of research data
and its metadata and to validate RDF data according to constraints ex-
tractable from these vocabularies, and (2) we propose a general approach
directly validating XML against semantically rich OWL axioms when using
them in terms of constraints, extracted from XML Schemas adequately rep-
resenting particular domains.

We have published a set of constraint types, required by various stakehold-
ers for data applications, which forms the basis of this thesis. Each constraint
type corresponds to one of the requirements derived from jointly collected
case studies and use cases. We use this collection (1) to gain a better under-
standing of the expressiveness of existing and currently evolved solutions, (2)
to identify gaps that still need to be filled, (3) to investigate which languages
cover certain constraint types for which reasoning may be performed prior to
validation to enhance data quality, (4) to evaluate the usability of constraint
types for assessing RDF data quality, and (5) to give directions for the future
development of constraint languages.

We introduce a validation framework as (1) none of the languages, we
consider as high-level constraint languages, is able to meet all requirements
raised by various data practitioners, i.e., enables to express each constraint
type and (2) these languages either lack an implementation to actually validate
RDF data on constraints expressed in these languages or are based on different
implementations.

The framework enables to consistently execute RDF-based constraint lan-
guages on RDF data and to formulate constraints of any type in a way that
mappings from high-level constraint languages to an intermediate generic rep-
resentation can be created straight-forwardly. The framework reduces the rep-
resentation of constraints to the absolute minimum, is based on formal logics,
and consists of a very simple conceptual model with a small lightweight vo-
cabulary. We demonstrate that using another layer on top of SPARQL ensures
for each constraint type that (1) the validation of semantically equivalent con-
straint of the same type points out the same set of violations regardless of the
language used to express them and (2) semantically equivalent constraints of
the same type can be transformed from one language to another.

As constraints of different types are representable by different languages,
we suggest to base the selection of a suitable constraint language on the re-
quirements to be satisfied and to use the framework to express constraint
types not supported by chosen languages.
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[197] Kupfer, A., Eckstein, S., Störmann, B., Neumann, K., & Mathiak, B.
(2007). Methods for a Synchronised Evolution of Databases and Associ-
ated Ontologies. In Proceedings of the 2007 Conference on Databases and
Information Systems IV.

[198] Lalor, T. (2013a). Generic Statistical Information Model (GSIM): Com-
munication Paper for a General Statistical Audience (Version 1.1, Decem-
ber 2013). Technical report, United Nations Economic Commission for
Europe (UNECE). http://www1.unece.org/stat/platform/display/gsim/
GSIM+Communication+Paper.

[199] Lalor, T. (2013b). Generic Statistical Information Model (GSIM) Spec-
ification - Version 1.1. United Nations Economic Commission for Eu-
rope (UNECE) Specification, United Nations Economic Commission for
Europe (UNECE). http://www1.unece.org/stat/platform/display/gsim/
GSIM+Specification.

[200] Lausen, G., Meier, M., & Schmidt, M. (2008). SPARQLing Constraints
for RDF. In Proceedings of the 11th International Conference on Extend-
ing Database Technology: Advances in Database Technology (EDBT 2008)
(pp. 499–509). New York, NY, USA: ACM. http://doi.acm.org/10.1145/
1353343.1353404.

[201] Layman, A., Jung, E., Maler, E., Thompson, H. S., Paoli, J., Tigue,
J., Mikula, N. H., & De Rose, S. (1998). XML-Data. W3C Note, W3C.
https://www.w3.org/TR/1998/NOTE-XML-data-0105/.

[202] Le Hors, A., Solbrig, H., & Prud’hommeaux, E. (2013). RDF Validation
Workshop Report - Practical Assurances for Quality RDF Data. Technical
report, W3C/MIT, Cambridge, MA, USA. http://www.w3.org/2012/12/
rdf-val/report.

[203] Lebo, T., Sahoo, S., & McGuinness, D. (2013). PROV-O: The PROV
Ontology. W3C Recommendation, W3C. http://www.w3.org/TR/2013/
REC-prov-o-20130430/.

[204] Lee, D. & Chu, W. W. (2000). Comparative Analysis of Six XML
Schema Languages. ACM SIGMOD (Special Interest Group on Manage-
ment of Data) Record, 29(3), 76–87. http://doi.acm.org/10.1145/362084.
362140.

[205] Library of Congress (2014a). BIBFRAME Authorities. Library of
Congress Draft Specification, Library of Congress. http://www.loc.gov/
bibframe/docs/bibframe-authorities.html.

[206] Library of Congress (2014b). BIBFRAME Profiles: Introduction and
Specification. Library of Congress Draft, Library of Congress. http://www.
loc.gov/bibframe/docs/bibframe-profiles.html.

[207] Library of Congress (2014c). BIBFRAME Relationships. Library of
Congress Draft Specification, Library of Congress. http://www.loc.gov/
bibframe/docs/bibframe-relationships.html.

[208] Linnerud, J., Risnes, Ø., & Gregory, A. (2015). GSIM in Practice
in Norway. In Proceedings of the Workshop on International Collabora-
tion for Standards-Based Modernisation, United Nations Economic Com-

http://www1.unece.org/stat/platform/display/gsim/GSIM+Communication+Paper
http://www1.unece.org/stat/platform/display/gsim/GSIM+Communication+Paper
http://www1.unece.org/stat/platform/display/gsim/GSIM+Specification
http://www1.unece.org/stat/platform/display/gsim/GSIM+Specification
http://doi.acm.org/10.1145/1353343.1353404
http://doi.acm.org/10.1145/1353343.1353404
https://www.w3.org/TR/1998/NOTE-XML-data-0105/
http://www.w3.org/2012/12/rdf-val/report
http://www.w3.org/2012/12/rdf-val/report
http://www.w3.org/TR/2013/REC-prov-o-20130430/
http://www.w3.org/TR/2013/REC-prov-o-20130430/
http://doi.acm.org/10.1145/362084.362140
http://doi.acm.org/10.1145/362084.362140
http://www.loc.gov/bibframe/docs/bibframe-authorities.html
http://www.loc.gov/bibframe/docs/bibframe-authorities.html
http://www.loc.gov/bibframe/docs/bibframe-profiles.html
http://www.loc.gov/bibframe/docs/bibframe-profiles.html
http://www.loc.gov/bibframe/docs/bibframe-relationships.html
http://www.loc.gov/bibframe/docs/bibframe-relationships.html


References 241

mission for Europe Conference of European Statisticians Geneva, Switzer-
land. http://www1.unece.org/stat/platform/display/WICSBM/Geneva%
2C+5-7+May+2015.

[209] Lohmann, S., Dietzold, S., Heim, P., & Heino, N. (2009). A Web
Platform for Social Requirements Engineering. In J. Münch & P. Ligges-
meyer (Eds.), Software Engineering, volume 150 of Lecture Notes in In-
formatics (pp. 309–316). Bonn, Germany: Gesellschaft für Informatik.
http://subs.emis.de/LNI/Proceedings/Proceedings150/article5334.html.

[210] Lohmann, S., Heim, P., Auer, S., Dietzold, S., & Riechert, T. (2008).
Semantifying Requirements Engineering - The SoftWiki Approach. In Pro-
ceedings of the 4th International Conference on Semantic Technologies (I-
SEMANTICS 2008) (pp. 182–185). Graz, Austria.

[211] Lutz, C., Areces, C., Horrocks, I., & Sattler, U. (2005). Keys, Nominals,
and Concrete Domains. Journal of Artificial Intelligence Research, 23(1),
667–726. http://dl.acm.org/citation.cfm?id=1622503.1622518.

[212] Maali, F. & Erickson, J. (2014). Data Catalog Vocabulary
(DCAT). W3C Recommendation, W3C. http://www.w3.org/TR/2014/
REC-vocab-dcat-20140116/.

[213] Mader, C., Haslhofer, B., & Isaac, A. (2012). Finding Quality Issues
in SKOS Vocabularies. In Proceedings of the Second International Confer-
ence on Theory and Practice of Digital Libraries, TPDL’12 (pp. 222–233).
Berlin, Heidelberg: Springer-Verlag. http://link.springer.com/chapter/10.
1007%2F978-3-642-33290-6 25.

[214] Mechanda, K. (2015). Statistical Metadata Strategy and GSIM Im-
plementation in Canada. In Proceedings of the Workshop on Inter-
national Collaboration for Standards-Based Modernisation, United Na-
tions Economic Commission for Europe Conference of European Statisti-
cians Geneva, Switzerland. http://www1.unece.org/stat/platform/display/
WICSBM/Geneva%2C+5-7+May+2015.

[215] Mellor, S. J., Kendall, S., Uhl, A., & Weise, D. (2004). MDA Distilled.
Redwood City, CA, USA: Addison Wesley Longman Publishing Co., Inc.

[216] Melnik, S. (1999). Bridging the Gap between RDF and XML. Technical
report. http://infolab.stanford.edu/�melnik/rdf/fusion.html.

[217] Mernik, M., Heering, J., & Sloane, A. M. (2005). When and How to
Develop Domain-Specific Languages. ACM Computing Surveys, 37(4), 316–
344. http://doi.acm.org/10.1145/1118890.1118892.

[218] Miles, A. & Bechhofer, S. (2009a). SKOS Simple Knowledge Orga-
nization System eXtension for Labels (SKOS-XL). W3C Recommenda-
tion, W3C. http://www.w3.org/TR/2009/REC-skos-reference-20090818/
skos-xl.html.

[219] Miles, A. & Bechhofer, S. (2009b). SKOS Simple Knowledge Organi-
zation System Reference. W3C Recommendation, W3C. http://www.w3.
org/TR/2009/REC-skos-reference-20090818/.

[220] Miller, E., Mueller, V., Ogbuji, U., & Baker, M. (2014). BIBFRAME
Profiles: Introduction and Specification. Library of Congress Draft

http://www1.unece.org/stat/platform/display/WICSBM/Geneva%2C+5-7+May+2015
http://www1.unece.org/stat/platform/display/WICSBM/Geneva%2C+5-7+May+2015
http://subs.emis.de/LNI/Proceedings/Proceedings150/article5334.html
http://dl.acm.org/citation.cfm?id=1622503.1622518
http://www.w3.org/TR/2014/REC-vocab-dcat-20140116/
http://www.w3.org/TR/2014/REC-vocab-dcat-20140116/
http://link.springer.com/chapter/10.1007%2F978-3-642-33290-6_25
http://link.springer.com/chapter/10.1007%2F978-3-642-33290-6_25
http://www1.unece.org/stat/platform/display/WICSBM/Geneva%2C+5-7+May+2015
http://www1.unece.org/stat/platform/display/WICSBM/Geneva%2C+5-7+May+2015
http://infolab.stanford.edu/~melnik/rdf/fusion.html
http://doi.acm.org/10.1145/1118890.1118892
http://www.w3.org/TR/2009/REC-skos-reference-20090818/skos-xl.html
http://www.w3.org/TR/2009/REC-skos-reference-20090818/skos-xl.html
http://www.w3.org/TR/2009/REC-skos-reference-20090818/
http://www.w3.org/TR/2009/REC-skos-reference-20090818/


242 References

Specification, Library of Congress. http://www.loc.gov/bibframe/docs/
bibframe-profiles.html.

[221] Miller, K. & Vardigan, M. (2005). How Initiative Benefits the Research
Community - the Data Documentation Initiative. In Proceedings of the
1th International Conference on e-Social Science Manchester, UK. http:
//www.ddialliance.org/sites/default/files/miller.pdf.

[222] Miller, L. (2001). RDF Squish Query Language and Java Implementa-
tion. Draft. http://ilrt.org/discovery/2001/02/squish/.

[223] Miller, Eric and Ogbuji, Uche and Mueller, Victoria and Mac-
Dougall, Kathy (2012). Bibliographic Framework as a Web of Data:
Linked Data Model and Supporting Services. Technical report, Library
of Congress, Washington, DC, USA. http://www.loc.gov/bibframe/pdf/
marcld-report-11-21-2012.pdf.

[224] Minker, J. (1982). On Indefinite Databases and the Closed World As-
sumption. In D. Loveland (Ed.), 6th Conference on Automated Deduction,
volume 138 of Lecture Notes in Computer Science (pp. 292–308). Springer
Berlin Heidelberg.

[225] Minsky, M. (1974). A Framework for Representing Knowledge. Technical
report, Cambridge, MA, USA.

[226] Moreau, L. & Missier, P. (2013). PROV-DM: The PROV Data
Model. W3C Recommendation, W3C. http://www.w3.org/TR/2013/
REC-prov-dm-20130430/.

[227] Motik, B., Grau, B. C., Horrocks, I., Wu, Z., Fokoue, A., & Lutz, C.
(2012a). OWL 2 Web Ontology Language: Profiles. W3C Recommendation,
W3C. http://www.w3.org/TR/2012/REC-owl2-profiles-20121211/.

[228] Motik, B., Horrocks, I., & Sattler, U. (2007). Adding Integrity Con-
straints to OWL. In Proceedings of the OWLED 2007 Workshop on
OWL: Experiences and Directions, volume 258 Innsbruck, Austria. http:
//ceur-ws.org/Vol-258/.

[229] Motik, B., Horrocks, I., & Sattler, U. (2009). Bridging the Gap Between
OWL and Relational Databases. Journal of Web Semantics, 7(2), 74–89.
http://www.websemanticsjournal.org/index.php/ps/article/view/159.

[230] Motik, B., Parsia, B., & Patel-Schneider, P. F. (2012b). OWL 2 Web
Ontology Language XML Serialization (Second Edition). W3C Recommen-
dation, W3C. http://www.w3.org/TR/2012/REC-owl2-xml-serialization-
20121211/.

[231] Murata, M., Lee, D., Mani, M., & Kawaguchi, K. (2005). Taxonomy of
XML Schema Languages Using Formal Language Theory. ACM Transac-
tions on Internet Technology, 5(4), 660–704.

[232] National Information Standards Organization (NISO) (2004). Under-
standing Metadata. NISO Press, (pp. 1 – 18). http://www.niso.org/
publications/press/UnderstandingMetadata.pdf.

[233] Nentwich, C., Capra, L., Emmerich, W., & Finkelstein, A. (2002).
Xlinkit: A Consistency Checking and Smart Link Generation Service. ACM
Transactions on Internet Technologies, 2(2), 151–185.

http://www.loc.gov/bibframe/docs/bibframe-profiles.html
http://www.loc.gov/bibframe/docs/bibframe-profiles.html
http://www.ddialliance.org/sites/default/files/miller.pdf
http://www.ddialliance.org/sites/default/files/miller.pdf
http://ilrt.org/discovery/2001/02/squish/
http://www.loc.gov/bibframe/pdf/marcld-report-11-21-2012.pdf
http://www.loc.gov/bibframe/pdf/marcld-report-11-21-2012.pdf
http://www.w3.org/TR/2013/REC-prov-dm-20130430/
http://www.w3.org/TR/2013/REC-prov-dm-20130430/
http://ceur-ws.org/Vol-258/
http://ceur-ws.org/Vol-258/
http://www.websemanticsjournal.org/index.php/ps/article/view/159
http://www.niso.org/publications/press/UnderstandingMetadata.pdf
http://www.niso.org/publications/press/UnderstandingMetadata.pdf


References 243

[234] Nilsson, M. (2008). Description Set Profiles: A Constraint Language
for Dublin Core Application Profiles. DCMI Working Draft, Dublin Core
Metadata Initiative (DCMI). http://dublincore.org/documents/2008/03/
31/dc-dsp/.

[235] Nilsson, M., Baker, T., & Johnston, P. (2008a). The Singapore Frame-
work for Dublin Core Application Profiles. DCMI Recommended Re-
source, Dublin Core Metadata Initiative (DCMI). http://dublincore.org/
documents/2008/01/14/singapore-framework/.

[236] Nilsson, M., Powel, A., Johnston, P., & Naeve, A. (2008b). Expressing
Dublin Core Metadata using the Resource Description Framework (RDF).
DCMI Recommendation, Dublin Core Metadata Initiative (DCMI). http:
//dublincore.org/documents/2008/01/14/dc-rdf/.

[237] Nilsson, U. & Maluszynski, J. (1995). Logic, Programming, and PRO-
LOG. New York, NY, USA: John Wiley & Sons, Inc., 2nd edition.
http://dl.acm.org/citation.cfm?id=546470.

[238] Nolle, A., Meilicke, C., Stuckenschmidt, H., & Nemirovski, G. (2014).
Efficient Federated Debugging of Lightweight Ontologies. In Web Reasoning
and Rule Systems (pp. 206–215). Springer International Publishing.

[239] Nolle, A. & Nemirovski, G. (2013). ELITE: An Entailment-Based Fed-
erated Query Engine for Complete and Transparent Semantic Data Inte-
gration. In Proceedings of the 26th International Workshop on Description
Logics (pp. 854–867).: CEUR Electronic Workshop Proceedings.

[240] Nottingham, M. and Sayre, R. (2005). Atom Syndication Format
(Atom). Proposed Standard Specification, IETF atompub Working Group.
http://www.w3.org/2005/Atom.

[241] Obasanjo, D. (2004). Improving XML Document Validation with
Schematron. Technical report, Microsoft Corporation. https://msdn.
microsoft.com/en-us/library/aa468554.aspx.

[242] Object Management Group (OMG) (2003). Common Warehouse
Metamodel (CWM) Specification - Version 1.1. Object Manage-
ment Group (OMG) Specification, Object Management Group (OMG).
http://www.omg.org/spec/CWM/1.1/.

[243] Object Management Group (OMG) (2011a). OMG Unified Modeling
Language (OMG UML), Infrastructure - Version 2.4.1. Object Manage-
ment Group (OMG) Specification, Object Management Group (OMG).
http://www.omg.org/spec/UML/2.4.1/Infrastructure/.

[244] Object Management Group (OMG) (2011b). OMG Unified Modeling
Language (OMG UML), Superstructure - Version 2.4.1. Object Manage-
ment Group (OMG) Specification, Object Management Group (OMG).
http://www.omg.org/spec/UML/2.4.1/Superstructure/.

[245] Object Management Group (OMG) (2012). OMG Systems Mod-
eling Language (OMG SysML) - Version 1.3. Object Manage-
ment Group (OMG) Specification, Object Management Group (OMG).
http://www.omg.org/spec/SysML/1.3/.

http://dublincore.org/documents/2008/03/31/dc-dsp/
http://dublincore.org/documents/2008/03/31/dc-dsp/
http://dublincore.org/documents/2008/01/14/singapore-framework/
http://dublincore.org/documents/2008/01/14/singapore-framework/
http://dublincore.org/documents/2008/01/14/dc-rdf/
http://dublincore.org/documents/2008/01/14/dc-rdf/
http://dl.acm.org/citation.cfm?id=546470
https://msdn.microsoft.com/en-us/library/aa468554.aspx
https://msdn.microsoft.com/en-us/library/aa468554.aspx


244 References

[246] Object Management Group (OMG) (2013a). Business Process
Model and Notation (BPMN) - Version 2.0.2. Object Manage-
ment Group (OMG) Specification, Object Management Group (OMG).
http://www.omg.org/spec/BPMN/2.0.2/.

[247] Object Management Group (OMG) (2013b). OMG Meta Object
Facility (MOF) Core Specification - Version 2.4.1. Object Manage-
ment Group (OMG) Specification, Object Management Group (OMG).
http://www.omg.org/spec/MOF/2.4.1/.

[248] Object Management Group (OMG) (2014a). Object Constraint Lan-
guage - Version 2.4. Object Management Group (OMG) Specification, Ob-
ject Management Group (OMG). http://www.omg.org/spec/OCL/2.4/.

[249] Object Management Group (OMG) (2014b). XML Metadata In-
terchange (XMI) Specification - Version 2.4.2. Object Manage-
ment Group (OMG) Specification, Object Management Group (OMG).
http://www.omg.org/spec/XMI/2.4.2.

[250] Object Management Group (OMG) (2015). Meta Object Facility (MOF)
2.0 Query/View/Transformation Specification - Version 1.2. Object Man-
agement Group (OMG) Specification, Object Management Group (OMG).
http://www.omg.org/spec/QVT/1.2.

[251] O’Connor, M. J. & Das, A. (2010). Semantic Reasoning with XML-
Based Biomedical Information Models. Studies in Health Technology and
Informatics, 160(2), 986–990.

[252] O’Connor, M. J. & Das, A. (2011). Acquiring OWL Ontologies from
XML Documents. In Proceedings of the 6th International Conference on
Knowledge Capture (K-CAP 2011) (pp. 17–24). New York, NY, USA: ACM.

[253] Ogbuji, C. (2000). Validating XML with Schematron. Technical
report, O’Reilly Media, Inc. http://www.xml.com/pub/a/2000/11/22/
schematron.html.

[254] Patel-Schneider, P. F. (2015). Using Description Logics for RDF
Constraint Checking and Closed-World Recognition. In Proceedings of
the 29th AAAI Conference on Artificial Intelligence (AAAI-2015) Austin
Texas, USA. http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/
view/9531.
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Database with Datalog and SQL Query Languages. In H. Yang (Ed.),
Programming Languages and Systems, volume 7078 of Lecture Notes in
Computer Science (pp. 66–73). Springer Berlin Heidelberg. http://dx.doi.
org/10.1007/978-3-642-25318-8 8.

[282] Shabo, A., Rabinovici-Cohen, S., & Vortman, P. (2006). Revolutionary
Impact of XML on Biomedical Information Interoperability. IBM Systems
Journal, 45(2), 361–372.

[283] Shadbolt, N., Berners-Lee, T., & Hall, W. (2006). The Semantic Web
Revisited. IEEE Intelligent Systems, 21(3), 96–101. http://www.computer.
org/csdl/mags/ex/2006/03/x3096-abs.html.

http://www.w3.org/Submission/2014/SUBM-shapes-20140211/
http://ceur-ws.org/Vol-996/
http://www1.unece.org/stat/platform/display/WICSBM/Geneva%2C+5-7+May+2015
http://www1.unece.org/stat/platform/display/WICSBM/Geneva%2C+5-7+May+2015
http://iassistdata.org/iq/issue/38/4
http://linkeddatacatalog.dws.informatik.uni-mannheim.de/state/
http://linkeddatacatalog.dws.informatik.uni-mannheim.de/state/
http://www.w3.org/TR/2009/REC-owl2-rdf-based-semantics-20091027/
http://www.w3.org/TR/2009/REC-owl2-rdf-based-semantics-20091027/
http://www.w3.org/TR/2014/NOTE-rdf11-primer-20140624/
http://www.w3.org/TR/2014/NOTE-rdf11-primer-20140624/
http://dx.doi.org/10.1007/978-3-642-25318-8_8
http://dx.doi.org/10.1007/978-3-642-25318-8_8
http://www.computer.org/csdl/mags/ex/2006/03/x3096-abs.html
http://www.computer.org/csdl/mags/ex/2006/03/x3096-abs.html


References 247

[284] Simister, S. & Brickley, D. (2013). Simple Application-Specific Con-
straints for RDF Models. In W3C RDF Validation Workshop. Prac-
tical Assurances for Quality RDF Data Cambridge, MA, USA. http:
//www.w3.org/2012/12/rdf-val/.

[285] Sirin, E., Parsia, B., Grau, B. C., Kalyanpur, A., & Katz, Y. (2007).
Pellet: A Practical OWL-DL Reasoner. Web Semantics: Science, Services
and Agents on the World Wide Web, 5(2), 51–53.

[286] Sirin, E. & Tao, J. (2009). Towards Integrity Constraints in OWL. In
Proceedings of the 6th International Workshop on OWL: Experiences and
Directions (OWLED 2009), 8th International Semantic Web Conference
(ISWC 2009) Chantilly, Virginia, USA. http://webont.org/owled/2009/.

[287] Solbrig, H. & Prud’hommeaux, E. (2014). Shape Expressions 1.0 Defi-
nition. W3C Member Submission, W3C. http://www.w3.org/Submission/
2014/SUBM-shex-defn-20140602/.

[288] Solbrig, H. & Prud’hommeaux, E. (2015). A Formal Model of the Shape
Expression Language. Technical report. https://github.com/w3c/ShEx/
blob/master/ShExZ/ShExZ.pdf.

[289] Sporny, M., Kellogg, G., & Lanthaler, M. (2014). JSON-LD 1.0 - A
JSON-based Serialization for Linked Data. W3C Recommendation, W3C.
http://www.w3.org/TR/2014/REC-json-ld-20140116/.

[290] Statistical Data and Metadata eXchange (SDMX) (2013). SDMX
2.1 Technical Specification – Consolidated Version 2013. SDMX Tech-
nical Specification, Statistical Data and Metadata eXchange (SDMX).
http://sdmx.org/?page id=10.

[291] Statistical Data and Metadata eXchange (SDMX) (2014). SDMX
Statistical Guidelines - Content-Oriented Guidelines. SDMX Technical
Specification, Statistical Data and Metadata eXchange (SDMX). http:
//sdmx.org/?page id=11.

[292] Staworko, S., Boneva, I., Gayo, J. E. L., Hym, S., Prud’hommeaux,
E. G., & Solbrig, H. (2015). Complexity and Expressiveness of ShEx for
RDF. In M. Arenas & M. Ugarte (Eds.), 18th International Conference on
Database Theory (ICDT 2015), volume 31 of Leibniz International Proceed-
ings in Informatics (LIPIcs) (pp. 195–211). Dagstuhl, Germany: Schloss
Dagstuhl –Leibniz Center for Informatics.

[293] Steinberg, D., Budinsky, F., Paternostro, M., & Merks, E. (2009). EMF:
Eclipse Modeling Framework. Addison-Wesley Professional, 2nd edition.

[294] Stuckenschmidt, H. (2011). Ontologien, Konzepte, Technologien und
Anwendungen. Berlin, Heidelberg, Germany: Springer.

[295] Taha, W. (2008). Domain-Specific Languages. In Proceeding of the 15th
International Conference on Computer Engineering and Systems (ICCES
2008) Houston, TX, USA. http://www.cs.rice.edu/�taha/publications/
conference/icces08.pdf.

[296] Tandy, J., Ceolin, D., & Stephan, E. (2016). CSV on the Web: Use
Cases and Requirements. W3C Working Group Note, W3C. https://www.
w3.org/TR/2016/NOTE-csvw-ucr-20160225/.

http://www.w3.org/2012/12/rdf-val/
http://www.w3.org/2012/12/rdf-val/
http://webont.org/owled/2009/
http://www.w3.org/Submission/2014/SUBM-shex-defn-20140602/
http://www.w3.org/Submission/2014/SUBM-shex-defn-20140602/
https://github.com/w3c/ShEx/blob/master/ShExZ/ShExZ.pdf
https://github.com/w3c/ShEx/blob/master/ShExZ/ShExZ.pdf
http://sdmx.org/?page_id=10
http://sdmx.org/?page_id=11
http://sdmx.org/?page_id=11
http://www.cs.rice.edu/~taha/publications/conference/icces08.pdf
http://www.cs.rice.edu/~taha/publications/conference/icces08.pdf
https://www.w3.org/TR/2016/NOTE-csvw-ucr-20160225/
https://www.w3.org/TR/2016/NOTE-csvw-ucr-20160225/


248 References

[297] Tandy, J. & Herman, I. (2015). Generating JSON from Tabular Data on
the Web. W3C Recommendation, W3C. https://www.w3.org/TR/2015/
REC-csv2json-20151217/.

[298] Tandy, J., Herman, I., & Kellogg, G. (2015). Generating RDF from
Tabular Data on the Web. W3C Recommendation, W3C. https://www.
w3.org/TR/2015/REC-csv2rdf-20151217/.

[299] Tao, J. (2012). Integrity Constraints for the Semantic Web: An OWL 2
DL Extension. PhD thesis, Rensselaer Polytechnic Institute.

[300] Tao, J., Sirin, E., Bao, J., & McGuinness, D. L. (2010). Integrity Con-
straints in OWL. In Proceedings of the 24th AAAI Conference on Artificial
Intelligence (AAAI 2010) Atlanta, Georgia, USA. https://www.aaai.org/
ocs/index.php/AAAI/AAAI10/paper/viewFile/1931/2229.

[301] Tennison, J. (2016). CSV on the Web: A Primer. W3C
Working Group Note, W3C. https://www.w3.org/TR/2016/
NOTE-tabular-data-primer-20160225/.

[302] Tennison, J. & Kellogg, G. (2015a). Metadata Vocabulary for Tabu-
lar Data. W3C Recommendation, W3C. https://www.w3.org/TR/2015/
REC-tabular-metadata-20151217/.

[303] Tennison, J. & Kellogg, G. (2015b). Model for Tabular Data and Meta-
data on the Web. W3C Recommendation, W3C. https://www.w3.org/TR/
2015/REC-tabular-data-model-20151217/.

[304] Thompson, H. S., Beech, D., Maloney, M., & Mendelsohn, N. (2004).
XML Schema Part 1: Structures Second Edition. W3C Recommendation,
W3C. http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/.
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