
Directing the Development of Constraint Languages

by Checking Constraints on RDF Data

Thomas Hartmann

Monitoring Society and Social Change

GESIS ��� Leibniz Institute for the Social Sciences

Square B2 1, Mannheim, 68159, Germany
thomas.hartmann@gesis.org; mail@dr-thomashartmann.de

Benjamin Zapilko

Knowledge Technologies for the Social Sciences

GESIS ��� Leibniz Institute for the Social Sciences
Unter Sachsenhausen 6-8

Cologne, 50667, Germany

benjamin.zapilko@gesis.org

Joachim Wackerow

Monitoring Society and Social Change
GESIS ��� Leibniz Institute for the Social Sciences

Square B2 1, Mannheim, 68159, Germany

joachim.wackerow@gesis.org

Kai Eckert

WISS Research Group, Faculty of Information and Communication

Stuttgart Media University

Nobelstra�e 10, Stuttgart, 70569, Germany

eckert@hdm-stuttgart.de

For research institutes, data libraries, and data archives, validating RDF data according to pre-
de¯ned constraints is a much sought-after feature, particularly as this is taken for granted in the

XMLworld.Based on ourwork in two internationalworking groups onRDFvalidation and jointly

identi¯ed requirements to formulate constraints and validate RDF data, we have published 81

types of constraints that are required by various stakeholders for data applications.
In this paper, we evaluate the usability of identi¯ed constraint types for assessing RDF data

quality by (1) collecting and classifying 115 constraints on vocabularies commonly used in the

social, behavioral, and economic sciences, either from the vocabularies themselves or from

domain experts, and (2) validating 15,694 data sets (4.26 billion triples) of research data against
these constraints. We classify each constraint according to (1) the severity of occurring viola-

tions and (2) based on which types of constraint languages are able to express its constraint

type. Based on the large-scale evaluation, we formulate several ¯ndings to direct the further

development of constraint languages.

Keywords: RDF data validation; RDF data quality; constraint languages; semantic web; linked

data; RDF.

International Journal of Semantic Computing
Vol. 10, No. 2 (2016) 193–217

°c World Scienti¯c Publishing Company

DOI: 10.1142/S1793351X16400079

193

http://dx.doi.org/10.1142/S1793351X16400079

1. Introduction

For constraint formulation and RDF data validation, several languages exist or are

currently developed. ShapeExpressions (ShEx),Resource Shapes (ReSh),Description

Set Pro¯les (DSP), the Web Ontology Language (OWL), the SPARQL Inferencing

Notation (SPIN), and the SPARQL Query Language for RDF are the six most

promising and widely used constraint languages. OWL is used as a constraint

language under the closed-world and unique name assumptions. With its direct

support of validation via SPARQL, SPIN is very popular and certainly plays an

important role for future developments in this ¯eld. It is particularly interesting as a

means to validate arbitrary constraint languages by mapping them to SPARQL

[1]. In addition, the W3C currently develops the Shapes Constraint Language

(SHACL), an RDF vocabulary for describing RDF graph structures. Yet, there is no

clear favorite and none of the languages is able to meet all requirements raised by

data practitioners. This is the reason why further research on RDF validation and

the development of constraint languages is needed.

In 2013, the W3C organized the RDF Validation Workshop, where experts from

industry, government, and academia discussed ¯rst use cases for constraint formu-

lation and RDF data validation. In 2014, two working groups on RDF validation

have been established to develop a language to express constraints on RDF data: the

W3C RDF Data Shapes Working Group and the DCMI RDF Application Pro¯les

Task Group which among others bundles the requirements of data institutions of the

cultural heritage sector and the social, behavioral, and economic (SBE) sciences and

represents them in the W3C working group.

Within the DCMI working group, a collaboratively curated database of RDF

validation requirements, online available at http://purl.org/net/rdf-validation,

has been created which contains the ¯ndings of the working groups based on

various case studies provided by various data institutions [2]. The database con-

nects requirements to use cases, case studies, and solutions and forms the basis of

this paper. Based on our work in these working groups and jointly identi¯ed

requirements to formulate constraints and validate RDF data, we have published

81 types of constraints; each of them corresponding to a requirement in the

database.

In this paper, we collected 115 constraints for three vocabularies commonly used

in the SBE domain (see Sec. 2), either from the vocabularies themselves or from

several domain and data experts, in order to gain a better understanding about the

role of certain constraint types for assessing data quality. We let the experts classify

the constraints according to the severity of their violation. Furthermore, we classi¯ed

each constraint type based on whether it is expressible by RDFS/OWL, common

high-level constraint languages, or only by plain SPARQL (see Sec. 4).

As we do not want to base our conclusions on the evaluation of vocabularies and

constraint de¯nitions alone, we conducted a large-scale experiment. For all these 115

constraints on the vocabularies DDI-RDF, QB, and SKOS, we evaluated the data

194 T. Hartmann et al.

quality of 15,694 data sets (4.26 billion triples) of SBE research data, obtained from

33 SPARQL endpoints. Based on the evaluation results, we formulate several ¯nd-

ings to direct the further development of constraint languages. To make valid general

statements for all vocabularies, however, these ¯ndings still have to be veri¯ed or

falsi¯ed by evaluating the quality of data represented by more than three vocabu-

laries (see Sec. 6).

In Sec. 5, we delineate how we implemented our validation environment which

can directly be used to validate RDF data against constraints expressed in any RDF-

based constraint language and extracted from or de¯ned for any RDF vocabulary.

In this paper, we discuss constraints on RDF data in general. Note that the data

represented in RDF can be data in the sense of the SBE sciences, but also metadata

about published or unpublished data. We generally refer to both simply as RDF data

and only distinguish between data and metadata in the data set descriptions.

2. Common Vocabularies in the SBE Sciences

We took all well-established and newly developed SBE vocabularies into account

and de¯ned constraints for three vocabularies commonly used in the SBE sciences.

We analyzed actual data according to constraint violations, as for these vocabularies

large data sets have already been published.

The data most often used in research within SBE sciences is unit-record data, i.e.,

data collected about individuals, businesses, and households, in form of responses

to studies or taken from administrative registers such as hospital records, registers of

births and deaths. A study represents the process by which a data set was generated

or collected. The range of unit-record data is very broad ��� including census, edu-

cation, and health data and business, social, and labor force surveys. This type of

research data is held within data archives or data libraries after it has been collected,

so that it may be reused by future researchers.

2.1. Vocabularies for representing multi-dimensional

aggregated data and its metadata

By its nature, unit-record data is highly con¯dential and access is often only per-

mitted for quali¯ed researchers who must apply for access. Researchers typically

represent their results as aggregated data in form of multi-dimensional tables with

only a few columns, so-called variables such as sex or age. Aggregated data, which

answers particular research questions, is derived from unit-record data by statistics

on groups or aggregates such as frequencies and arithmetic means. The purpose of

publicly available aggregated data is to get a ¯rst overview and to gain an interest in

further analyses on the underlying unit-record data. Aggregated data is published in

form of CSV ¯les, allowing to perform calculations on the data.

For more detailed analyses, researchers refer to unit-record data including addi-

tional variables needed to answer subsequent research questions like the comparison

Directing the Development of Constraint Languages 195

of studies between countries. Eurostat, the statistical o±ce of the European Union,

provides research ¯ndings in form of aggregated data (downloadable as CSV ¯les) and

its metadata on European level that enable comparisons between countries. Formal

childcare is an example of an aggregated variable which captures the measured

availability of childcare services in percent over the population in European Union

member states by the dimensions year, duration, age of the child, and country.

Variables are constructed out of values (of one or multiple datatypes) and/or code

lists. The variable age, e.g., may be represented by values of the datatype xsd:

nonNegativeInteger or by a code list of age clusters (e.g., `0 to 10' and `11 to 20').

A representative RDF validation case study within the SBE sciences is to ensure

correctness when comparing variables between data collections of di®erent countries.

Several vocabulary-speci¯c constraints on RDF data are checked for each data col-

lection in order to determine if variables measuring age ��� collected for di®erent

countries (ageDE , ageUK) ��� are comparable: (1) variable de¯nitions must be avail-

able, (2) for each code a human-readable label has to be speci¯ed, (3) code lists must be

structured properly, and (4) code lists must either be identical or at least similar. If a

researcher only wants to get a ¯rst overview on the comparability of variables (use

case 1), covering the ¯rst three constraints may be su±cient, i.e., the violation of the

¯rst three constraints is more serious than the violation of the last constraint. If the

intention of the researcher is to perform more sophisticated comparisons (use case 2),

however, the user may raise the severity level of the last constraint.

The RDF Data Cube Vocabulary (QB) [3] is a W3C recommendation for repre-

senting data cubes, i.e., multi-dimensional aggregated data and its metadata, in

RDF [4]. A qb:DataStructureDe¯nition contains metadata on the data collection.

The variable formal childcare is modeled as qb:measure, since it stands for what has

been measured in the data collection. Year, duration, age, and country are qb:

dimensions. Data values, i.e., the availability of childcare services in percent over the

population, are collected in a qb:DataSet. Each data value is represented inside a qb:

Observation containing the values for each dimension [5].

The development of QB is based on the Statistical Core Vocabulary (SCOVO)

[4, 6, 7], an RDFS-based, lightweight, and extensible vocabulary for representing

statistical data on the Web. SCOVO o®ers a basic core of classes and properties

for representing data sets, multiple dimensions, and statistical items. [8] extend

SCOVO with a vocabulary enabling the connection of SCOVO-described data sets

with external vocabularies to perform more complex data analyses and improve

discoverability and reusability.

2.2. Vocabulary for representing metadata on data in tabular format

Physical Data Description (PHDD) [9] is a vocabulary to represent metadata about

data in tabular format as well as its physical properties in RDF, enabling further

aggregations and calculations. The data could either be represented in records with

character-separated values (CSV) or ¯xed length. PHDD is usable standalone or

196 T. Hartmann et al.

together with related vocabularies like DDI-RDF or DCAT. The combined usage of

PHDD, DDI-RDF, and DCAT enables the creation of data repositories providing

metadata for the description of collections, data discovery, and the processing of the

data. Descriptions in PHDD could be added to web pages which enables an auto-

matic processing of the data by programs.

Eurostat provides a CSV ¯le, a two-dimensional table (phdd:Table) about the

variable formal childcare which is structured by a table structure (phdd:Table-

Structure, phdd:Delimited) including information about the character set (ASCII),

the variable delimiter (,), the new line marker (CRLF), and the ¯rst line where the

data starts (2). The table structure is related to table columns (phdd:Column) which

are described by column descriptions (phdd:DelimitedColumnDescription). For the

column containing the cell values in percent, the column position (5), the recom-

mended data type (xsd:nonNegativeInteger), and the storage format (TINYINT) are

given.

2.3. Vocabulary for representing metadata on unit-record data

The SBE sciences require high-quality data for their empirical research. For more

than a decade, members of the SBE community have been developing and using a

metadata standard, composed of almost twelve hundred metadata ¯elds, known as

the Data Documentation Initiative (DDI) [10], an XML format to disseminate,

manage, and reuse data collected and archived for research. In XML, the de¯nition of

schemas containing constraints and the validation of data according to these con-

straints is commonly used to ensure a certain level of data quality. With the rise of

the Web of Data, data professionals and institutions are very interested in publishing

their data directly in RDF or at least publish accurate metadata about their data to

facilitate discovery and reuse. Recently, members of the SBE and Linked Data

community developed with the DDI-RDF Discovery Vocabulary (DDI-RDF) [11] a

means to expose DDI metadata as Linked Data.

For more detailed analyses, we refer to the unit-record data collected for the series

EU-SILC (European Union Statistics on Income and Living Conditions). Where

data collection is cyclic, data sets may be released as series, where each cycle pro-

duces one or more data sets. The aggregated variable formal childcare is calculated

on the basis of six unit-record variables (i.a., Education at pre-school) for which

detailed metadata is given (i.a., code lists) enabling researchers to replicate the

results shown in aggregated data tables.

DDI-RDF is used to represent metadata on unit-record data in RDF. The series

(disco:StudyGroup) EU-SILC contains one study (disco:Study) for each year

(dcterms:temporal) of data collection. The property dcterms:spatial points to the

countries for which the data has been collected. The study EU-SILC 2011 contains

eight unit-record data sets (disco:LogicalDataSet) including unit-record variables

(disco:Variable) like the six ones needed to calculate the aggregated variable formal

childcare.

Directing the Development of Constraint Languages 197

2.4. Vocabularies for representing knowledge organization

systems and formal statistical classi¯cations

The Simple Knowledge Organization System (SKOS) [12, 13] is a vocabulary to

represent knowledge organization systems such as thesauri, classi¯cation schemes,

and taxonomies. Using SKOS, a knowledge organization system is expressible as

machine-readable data in a machine-processable standard format for the Semantic

Web. It can then be exchanged between computer applications and published in a

machine-readable format in the Web [13]. SKOS provides high interoperability with

other standards, formats, and applications as it is based on RDF, the standard model

for data interchange on the Web. SKOS is used to represent term relations, term

hierarchies, and the structure and semantics of vocabularies. A vocabulary is typi-

cally represented as a skos:ConceptScheme that holds multiple skos:Concepts which

can be linked to other skos:Concepts by hierarchical and associative properties that

are oriented on relations of the ISO norms for thesauri like skos:broader, skos:nar-

rower, and skos:related.

Thesauri organize complex relations between terms even on the lexical level. The

SKOS Simple Knowledge Organization System eXtension for Labels (SKOS-XL) [14]

de¯nes an extension for SKOS, providing additional support for describing and

linking lexical entities. This provides a complexity of relationships between terms

which is needed by several vocabularies.

SKOS is reused multiple times to build SBE vocabularies. The codes of the var-

iable Education at pre-school (measuring the number of education hours per week)

are modeled as skos:Concepts and a skos:OrderedCollection organizes them in a

particular order within a skos:memberList. A variable may be associated with a

theoretical concept (skos:Concept). Hierarchies of theoretical concepts are built

within a skos:ConceptScheme of a series using skos:narrower. The variable Educa-

tion at pre-school is assigned to the theoretical concept Child Care which is the

narrower concept of Education, one of the top concepts of the series EU-SILC.

Controlled vocabularies (skos:ConceptScheme), serving as extension and reuse

mechanism, organize types (skos:Concept) of descriptive statistics (disco:Summar-

yStatistics) like minimum, maximum, and arithmetic mean.

The SKOS Extension for Statistics (XKOS) [15] is a vocabulary to describe formal

statistical classi¯cations and introduce re¯nements of SKOS semantic proper-

ties [16]. A formal statistical classi¯cation is a hierarchical concept scheme including

concepts, associated codes (numeric string labels), short textual labels, de¯nitions,

and longer descriptions that include rules for their use.

XKOS extends SKOS for the needs of statistical classi¯cations like the Interna-

tional Standard Classi¯cation of Occupations (ISCO) and the Statistical Classi¯-

cation of Economic Activities in the European Community (NACE). It does so in two

main directions. First, it de¯nes a number of terms that enable the representation of

statistical classi¯cations with their structure and textual properties, as well as dif-

ferent types of relations between classi¯cations and contained concepts. Second,

198 T. Hartmann et al.

it re¯nes SKOS semantic properties to allow the use of more speci¯c relations be-

tween concepts. Those speci¯c relations can be used for the representation of clas-

si¯cations or for any other case where SKOS is employed [17]. The National Institute

of Statistics and Economic Studies (Insee) already provides diverse statistical

classi¯cations in RDF conforming to XKOS.

3. Related Work

For data archives, research institutes, and data libraries, RDF validation according

to prede¯ned constraints is a much sought-after feature, particularly as this is taken

for granted in the XML world. DDI-XML documents, e.g., are validated against

diverse XML Schemas. As certain constraints cannot be formulated and validated

by XML Schemas, so-called secondary-level validation tools like Schematron have

been introduced to overcome the limitations of XML validation. Schematron gen-

erates validation rules and validates XML documents according to them. With RDF

validation, one can overcome the drawbacks when validating XML documents.

It cannot be validated, e.g., if each code of a variable's code list is associated with a

category and that if an element has a speci¯c value then certain child elements must

be present.

A well-formed RDF Data Cube is an RDF graph describing one or more instances

of qb:DataSet for which each of the 22 integrity constraints, de¯ned within the QB

speci¯cation, passes [3]. Each integrity constraint is expressed as narrative prose and,

where possible, as a SPARQL ASK query or query template. If the ASK query is

applied to an RDF graph then it will return true if that graph contains one or more

QB instances which violate the corresponding constraint.

[18] investigated how to support taxonomists in improving SKOS vocabularies by

pointing out quality issues that go beyond the integrity constraints de¯ned in the

SKOS speci¯cation.

Stardog ICV and Pellet ICV use OWL 2 constructs to formulate constraints.OWL

in its current version 2 is an expressive language which is based on formal logic and on

the subject-predicate-object triples from RDF. OWL o®ers knowledge representation

and reasoning services in combination with SWRL. Validation, however, is not the

primary purpose of its design which has lead to claims that OWL cannot be used for

validation [19] and [20], e.g., discuss the di®erences between constraints and RDFS/

OWL axioms. In practice, however, OWL is well-spread and RDFS/OWL constructs

are widely used to tell people and applications about how valid instances should look

like. In general, RDF documents follow the semantics of RDFS/OWL ontologies

which could therefore not only be used for reasoning but also for validation.

The semantics which is applied for RDF validation is CWA/UNA. RDF valida-

tion requires that di®erent names represent di®erent objects (unique name as-

sumption (UNA)), whereas OWL is based on the non-unique name assumption

(nUNA). Reasoning in OWL is based on the open-world assumption (OWA), i.e.,

a statement cannot be inferred to be false if it cannot be proved to be true. On the

Directing the Development of Constraint Languages 199

other hand, RDF validation scenarios require the closed-world assumption (CWA),

i.e., a statement is inferred to be false if it cannot be proved to be true. This ambi-

guity in semantics is one of the main reasons why OWL has not been adopted as a

standard constraint language for RDF validation in the past. [21] propose an al-

ternative semantics for OWL using CWA/UNA so that it could be used to validate

integrity constraints. [22] claims that DL and therefore OWL axioms can be inter-

preted in a closed-world setting and used for constraint checking. When using OWL

axioms in terms of constraints, we adopt the same semantics that is used for RDF

validation.

4. Classi¯cation of Constraint Types and Constraints

To gain insights into the role that certain types of constraints play for assessing the

quality of RDF data, we use two simple classi¯cations. On the one hand, we classify

constraint types based on whether they are expressible by di®erent types of con-

straint languages. On the other hand, we let several domain experts classify con-

straints, which are formulated for a given vocabulary, according to the perceived

severity of their violation.

For the three vocabularies, several SBE domain experts determined the severity

level for each of the 115 constraints. In a technical report, we provide detailed textual

descriptions for all these constraints as well as their assignments to constraint types

and severity levels [23]. In the following, we summarize the classi¯cations of con-

straint types and constraints for the purpose of our evaluation.

4.1. Classi¯cation of constraint types according to the

expressivity of constraint language types

According to the expressivity of three di®erent types of constraint languages, the

complete set of constraint types encompasses the subsequent three not disjoint sets of

constraint types:

(1) RDFS/OWL Based

(2) Constraint Language Based

(3) SPARQL Based

RDFS/OWLBased. RDFS/OWL Based denotes the set of constraint types which

can be formulated with RDFS/OWL axioms when using them in terms of constraints

with CWA/UNA semantics and without reasoning. The entailment regime is to be

decided by the implementers. It is our point that reasoning a®ects validation and

that a proper de¯nition of the reasoning to be applied is needed.

The modeling languages RDFS and OWL are typically used to formally specify

vocabularies and RDFS/OWL axioms are commonly found within formal speci¯-

cations of vocabularies. In general, constraints instantiated from RDFS/OWL Based

constraint types can be seen as a basic level of constraints ensuring that the data is

200 T. Hartmann et al.

consistent with the formally and explicitly speci¯ed intended semantics of vocabu-

laries as well as with the integrity of vocabularies' conceptual models about data.

Constraints of the type minimum quali¯ed cardinality restrictions (R-75), e.g.,

guarantee that individuals of given classes are connected by particular properties to

at least n di®erent individuals/literals of certain classes or data ranges. For DDI-

RDF, a minimum quali¯ed cardinality restriction can be obtained from a respective

OWL axiom to ensure that each disco:Questionnaire includes (disco:question) at

least one disco:Question:

1 OWL:
2 disco:Questionnaire rdfs:subClassOf
3 [a owl:Restriction ;
4 owl:minQualifiedCardinality 1 ;
5 owl:onProperty disco:question ;
6 owl:onClass disco:Question] .

In contrast to RDFS/OWL Based constraints, Constraint Language and

SPARQL Based constraints are usually not (yet) explicitly de¯ned within formal

speci¯cations of vocabularies. Instead, they are often speci¯ed within formal as well

as informal textual descriptions of vocabularies. Additionally, we let domain experts

de¯ne constraints when they agreed that violating these constraints would a®ect the

usefulness of the data.

Constraint Language Based. We further distinguish Constraint Language

Based as the set of constraint types that can be expressed by classical high-level

constraint languages like ShEx, ReSh, and DSP. There is a strong overlap between

RDFS/OWL and Constraint Language Based constraint types as in many cases

constraint types are expressible by both classical constraint languages and RDFS/

OWL. SPARQL, however, is considered as a low-level implementation language in

this context. In contrast to SPARQL, high-level constraint languages are compar-

atively easy to understand and constraints can be formulated in a more concise way.

Declarative languages may be placed on top of SPARQL when using it as an exe-

cution language. For Constraint Language Based constraint types, we expect a

straight-forward support in future constraint languages.

Context-speci¯c exclusive or of property groups (R-13) is a constraint type which

can be formulated by the high-level constraint language ShEx. Constraints of this

type restrict individuals of given classes to have property links of properties de¯ned

within exactly one of multiple mutually exclusive property groups. Within the

context of DDI-RDF, e.g., skos:Concepts can have either skos:de¯nition (when

interpreted as theoretical concepts) or skos:notation and skos:prefLabel properties

(when interpreted as codes), but not both:

1 ShEx:
2 skos:Concept {
3 (skos:definition xsd:string) |
4 (skos:notation xsd:string , skos:prefLabel xsd:string) }

Directing the Development of Constraint Languages 201

SPARQL Based. The set SPARQL Based encompasses constraint types that

are not expressible by RDFS/OWL or common high-level constraint languages but

by plain SPARQL. For assessing the quality of thesauri, e.g., we concentrate on their

graph-based structure and apply graph- and network-analysis techniques. An ex-

ample of such constraints of the constraint type structure is that a thesaurus should

not contain many orphan concepts, i.e., concepts without any associative or hier-

archical relations, lacking context information valuable for search. As the complexity

of this constraint is relatively high, it is only expressible by SPARQL, not that

intuitive, and quite complex:

1 SPARQL:
2 SELECT ?concept WHERE {
3 ?concept a [rdfs:subClassOf* skos:Concept] .
4 FILTER NOT EXISTS { ?concept ?p ?o .
5 FILTER (?p IN (skos:related, skos:relatedMatch,
6 skos:broader, ...)) . } }

SPARQL Based constraint types are today only expressible by plain SPARQL.

Depending on their usefulness, a support in high-level constraint languages should be

considered.

4.2. Classi¯cation of constraints according to the severity

of constraint violations

A concrete constraint is instantiated from one of the 81 constraint types and de¯ned

for a speci¯c vocabulary. It does not make sense to determine the severity of con-

straint violations of an entire constraint type, as the severity depends on the indi-

vidual context and vocabulary. SBE experts determined the default severity level for

each of the 115 constraints to indicate how serious the violation of the constraint is.

Although we provide default severity levels for each constraint, validation environ-

ments should enable users to adapt the severity levels of constraints according to

their individual needs. The possibility to de¯ne severity levels for concrete con-

straints is in itself a requirement (R-158).

We use the classi¯cation system of log messages in software development like

Apache Log4j 2, the Java Logging API, and the Apache Commons Logging API as

many data practitioners also have experience in software development and software

developers intuitively understand these levels. We simplify this commonly accepted

classi¯cation system and distinguish the three severity levels (1) informational, (2)

warning, and (3) error. Violations of informational constraints point to desirable but

not necessary data improvements to achieve RDF representations which are ideal in

terms of syntax and semantics of used vocabularies. Warnings indicate syntactic or

semantic problems which typically should not lead to an abortion of data processing.

Errors, in contrast, are syntactic or semantic errors which should cause the abortion

of data processing.

202 T. Hartmann et al.

Note that there is indeed a correlation between the severity of a constraint and the

classi¯cation of its type: RDFS/OWL Based constraints are in many cases associated

with an error level as they typically represent basic constraints: there is a reason

why they have been included in the vocabulary speci¯cation.

4.3. Classi¯cation examples

To get an overview on the constraint types contained in each of the three sets of

constraint types, we delineate concrete constraints on the three vocabularies, group

them by constraint type set, and classify them according to the severity of their

violation.

RDFS/OWL Based. It is a common requirement to narrow down the value

space of properties by an exhaustive enumeration of valid values (R-30/37: allowed

values): disco:CategoryStatistics, e.g., can only have disco:computationBase rela-

tionships to the literals `̀ valid " and `̀ invalid" of the datatype rdf:langString (default

severity level: error). Consider the following DL knowledge base K, a collection of

formal statements corresponding to facts or what is known explicitly:

K ¼ f CategoryStatistics � 8 computationBase:

fvalid; invalidg u langString;

Variable � 9 concept:Concept;

DataSet v 8 structure:DataStructureDefinition;

9 hasTopConcept:> v ConceptScheme;

> v 8 variable:Variable g
The constraint type existential quanti¯cations (R-86) can be used to enforce that

instances of given classes must have some property relation to individuals/literals of

certain types. Variables, e.g., should have a relation to a theoretical concept (in-

formational). The default severity level of this constraint is weak, as in most cases

research can be continued without having information about the theoretical concept

of a variable.

A universal quanti¯cation (R-91) contains all those individuals that are connected

by a property only to individuals/literals of particular classes or data ranges.

Resources of the type qb:DataSet, e.g., can only have qb:structure relationships to qb:

DataStructureDe¯nitions (error).

Property domains (R-25) and property ranges (R-35) constraints restrict domains

and ranges of properties: only skos:ConceptSchemes, e.g., can have skos:has-

TopConcept relationships (error) and disco:variable relations can only point to

disco:Variables (error).

It is often useful to declare a given (data) property as the primary key (R-226) of a

class, so that a system can enforce uniqueness and build URIs from user inputs and

imported data. In DDI-RDF, resources are uniquely identi¯ed by the property adms:

identi¯er, which is therefore inverse-functional (funct identifier�), i.e., for each
rdfs:Resource x, there can be at most one distinct resource y such that y is connected

Directing the Development of Constraint Languages 203

by adms:identi¯er � to x (error). Keys, however, are even more general than inverse-

functional properties (R-58), as a key can be a data property, an object property, or a

chain of properties [24]. For this reason, as there are di®erent sorts of key, and as keys

can lead to undecidability, DL is extended with the construct keyfor (identifier

keyfor Resource) [25] which is implemented by the OWL 2 hasKey construct.

Constraint Language Based. Depending on property datatypes, two di®erent

literal values have a speci¯c ordering with respect to operators like < ðR� 43: literal

value comparison). Start dates (disco:startDate), e.g., must be before ð<Þ end dates

(disco:endDate).

In many cases, resources must be members of controlled vocabularies (R-32). If a

QB dimension property, e.g., has a qb:codeList, then the value of the dimension

property on every qb:Observation must be in that code list (error).

Default values for objects (R-31) or literals (R-38) of given properties are inferred

automatically when the properties are not present in the data. The value true for

the property disco:isPublic indicates that a disco:LogicalDataSet can be accessed

by anyone. Per default, however, access to data sets should be restricted (false)

(informational).

SPARQL Based. The purpose of constraints of the type data model consistency

is to ensure the integrity of the data according to the intended semantics of vocab-

ularies conceptual models about data. Every qb:Observation, e.g., must have a value

for each dimension declared in its qb:DataStructureDe¯nition (error) and no two qb:

Observations in the same qb:DataSet can have the same value for all dimensions

(warning). If a qb:DataSet D has a qb:Slice S, and S has a qb:Observation O, then

the qb:DataSet corresponding to O must be D (warning).

Objects/literals can be declared to be ordered for given properties (R-121/217:

ordering). Variables, questions, and codes, e.g., are typically organized in a partic-

ular order. If codes (skos:Concept) should be ordered, they must be members (skos:

memberList) in an ordered collection (skos:Ordered Collection) representing the code

list of a variable (informational).

It is useful to declare properties to be conditional (R-71), i.e., if particular

properties exist (or do not exist), then other properties must also be present (or

absent). To get an overview on a study, either an abstract, a title, an alternative title,

or links to external descriptions should be provided. If an abstract and an external

description are absent, however, a title or an alternative title should be given

(warning). In case a variable is represented in form of a code list, codes may be

associated with categories, i.e., human-readable labels (informational).

For data properties, it may be desirable to restrict that values of prede¯ned lan-

guages must be present for determined number of times (R-48/49: language tag car-

dinality): (1) It is checked if literal language tags are set. Some controlled vocabularies,

e.g., contain literals in natural language, but without information what language has

actually been used (warning). (2) Language tags must conform to language standards

(error). (3) Some thesaurus concepts are labeled in only one, others in multiple

204 T. Hartmann et al.

languages. It may be desirable to have each concept labeled in each of the languages

that are also used on the other concepts, as language coverage incompleteness for some

concepts may indicate shortcomings of thesauri (informational) [18].

5. Implementation

We claim that RDF data can be validated on constraints of each type expressed in

any RDF-based language using SPARQL as low-level executing language. This claim

is supported by the subsequent facts: [26] showed that constraints can be translated

into non-recursive Datalog programs for validation, while [27] proved that SPARQL

has the same expressive power as non-recursive Datalog programs. Therefore, data

validation can be reduced to SPARQL query answering and SPARQL queries can be

executed to validate RDF data against constraints of any type represented in any

RDF-based language which has to be expressible in SPARQL.

Since the validation of each of the 81 constraint types can be implemented using

SPARQL, we use SPIN, a SPARQL-based way to formulate and check constraints,

as basis to develop a validation environment to validate RDF data according to

constraints expressed in arbitrary constraint languages [1]. The RDF Validator,

online available at http://purl.org/net/rdfval-demo, can directly be used to validate

RDF data against constraints extracted from or de¯ned for the three vocabularies

DDI-RDF, QB, and SKOS. Additionally, own constraints on any vocabulary can be

de¯ned using several constraint languages.

The overall idea is that we see constraint languages as domain-speci¯c languages,

hence domain-speci¯c constraint languages (DSCL), that are translated into SPARQL

and executed on RDF data within our validation environment we based on SPIN.

Language designers are shifting attention from general purpose languages to domain-

speci¯c languages. General-purpose languages like Java and C++ for programming

have been the primary focus of language research for a long time. The idea was to create

only one language that is better suited for programming than any other language [28].

A domain-speci¯c language [29] is a small, usually declarative language, tailored

to a particular kind of problem [30] and o®ering substantial gains in expressiveness

and ease of use compared with general purpose languages for the domain in ques-

tion [31]. Instead of aiming to be the best for solving any kind of computing problem,

domain-speci¯c languages aim to be particularly good for solving a speci¯c class of

problems, and in doing so they are often much more accessible to the general public

than traditional general-purpose languages.

The translation of a DSCL into SPARQL queries is done once, for instance, by the

designer of the DSCL, and provided in form of a SPIN mapping plus optional pre-

processing instructions. From a user's perspective, all that is needed is a represen-

tation of constraints in the DSCL and some data to be validated against these

constraints. All these resources are purely declarative and provided in RDF or as

SPARQL queries. The actual execution of the constraint validation process is trivial

using SPIN and illustrated in Fig. 1.

Directing the Development of Constraint Languages 205

First, an RDF graph has to be populated as follows:

(1) The data is loaded that is to be validated,

(2) the constraints in the DSCL are loaded,

(3) the SPIN mapping is loaded that contains the SPARQL representation of the

DSCL, and

(4) the pre-processing is performed, which can be provided in form of SPARQL

CONSTRUCT queries.

When the input RDF graph is ready, the SPIN engine checks for each resource if it

satis¯es all constraints de¯ned in the DSCL and associated with the classes assigned

to the resource, and generates a result RDF graph containing information about all

constraint violations. With this framework, we have all we need to implement our

own DSCL.

With this implementation, there are two obvious limitations of our approach: (1)

constraints must be representable in RDF and (2) constraint languages must be

expressible in SPARQL, i.e., the actual checking of constraints of each type the

language supports must be expressible in form of a SPARQL query. For OWL 2,

DSP, ShEx, ReSh, and SHACL, this is the case, but in the future, non-RDF based

languages are expected to be supported as well.

5.1. Connect SPIN to your data

A SPIN mapping consists of multiple SPIN construct templates ��� each of them

containing a SPARQL query executable to validate RDF data against constraints of

a particular type. These templates are linked to the generic class ToValidate whose

instances are validated on constraints of a certain type expressed in the DSCL for

which the mapping is de¯ned:

1 :ToValidate
2 spin:constraint
3 [a dsp2spin:StatementTemplates_MinimumOccurrenceConstraint] .

Fig. 1. Constraint validation process.

206 T. Hartmann et al.

As the mapping is designed to be independent of any concrete data, the class

ToValidate is purely generic. Instead of using such a generic class, it is also possible to

link a template, responsible to check constraints of a given type, to the classes owl:

Thing or rdfs:Resource to achieve that all instances of the input RDF graph are

validated on constraints of that type.

Neither of these classes has to be assigned manually and explicitly to instances

within the data to be validated. They are either implicitly inferred by means of

reasoning or explicitly assigned during the pre-processing step, both in an automatic

way. A reasonable approach would be to specify ToValidate as super-class of all

classes whose instances should actually be validated against constraints (in the case

of DSP: classes that are linked via dsp:resourceClass to a description template);

this can be accomplished by a suitable SPARQL CONSTRUCT query that is ex-

ecuted before the validation starts. After pre-processing, the data might look like in

the following code snippet – with the added assignment to the generic class in italics.

1 :Description-Logic-Handbook
2 a :Computer-Science-Book , :ToValidate ;
3 :subject "Computer Science" .

5.2. Mapping from a DSCL to SPIN

The mapping from a DSCL to SPIN is performed by creating SPIN construct

templates ��� one for each constraint type that is supported by the DSCL, so for the

constraint typeminimum unquali¯ed cardinality restrictions (R-81) expressible in DSP:

1 dsp2spin:StatementTemplates_MinimumOccurrenceConstraint
2 a spin:ConstructTemplate ;
3 spin:body [
4 a sp:Construct ;
5 sp:templates (...) ;
6 sp:where (...)] .

5.2.1. Representing validation results as constraint violations in RDF

This is the general structure of a SPIN construct template representing a SPARQL

CONSTRUCT query in RDF. We use SPARQL CONSTRUCT queries to generate

descriptions for each detected constraint violation:

1 CONSTRUCT {
2 _:constraintViolation
3 a spin:ConstraintViolation ;
4 spin:violationRoot ?subject ;
5 rdfs:label ?violationMessage ;
6 spin:violationSource ?violationSource ;
7 :severityLevel ?severityLevel ;
8 spin:violationPath ?violationPath ;
9 spin:fix ?violationFix }

Directing the Development of Constraint Languages 207

In SPIN, the CONSTRUCT part of a SPARQL CONSTRUCT query is repre-

sented in RDF as follows:

1 a sp:Construct ;
2 sp:templates (
3 [sp:subject _:constraintViolation ;
4 sp:predicate rdf:type ;
5 sp:object spin:ConstraintViolation]
6 [sp:subject _:constraintViolation ;
7 sp:predicate rdfs:label ;
8 sp:object [sp:varName "violationMessage"]] ...) ;

Representing constraint violations and therefore validation results in RDF

enables to process them further by means of Semantic Web technologies. SPIN

construct templates generate constraint violation triples indicating the subject, the

properties, and the constraints causing the violations and the reason why violations

have been raised.

A SPIN construct template creates constraint violation triples if all triple

patterns within the SPARQL WHERE clause of the SPARQL CONSTRUCT

query match. If we specify the existential quanti¯cation that a book must have

at least one author and if the book The-Hound-Of-The-Baskervilles has no author

relationship, all the triple patterns within the SPARQL WHERE clause match

and the SPIN construct template for checking constraints of the type existential

quanti¯cations (R-86) generates a violation triple.

Constraint violations (spin:constraintViolation) should provide useful messages

(rdfs:label) explaining the reasons why the data did not satisfy the constraint in order

to assist data debugging and repair. In addition, constraint violation triples contain

references to the subjects (spin:violationRoot), the properties (spin:violationPath),

and the constraints (spin:violationSource) causing the violations. In the example, the

subject The-Hound-Of-The-Baskervilles, the property author, and the existential

quanti¯cation caused the violation.

Constraint violation triples may be linked to useful messages explaining how to

overcome raised violations. To ¯x constraint violations (spin:¯x), we may give some

guidance how to become valid data either by adding, modifying, or deleting triples.

To indicate how severe the violation of a constraint is, we introduce a new property

to classify constraints according to di®erent levels of severity (severityLevel)

like informational, warning, and error. It is also important to ¯nd not validated

triples, i.e., triples which have not been validated against any constraint, as it may be

enforced that every triple of the input graph has to be validated.

5.2.2. Representing constraint checks in RDF

One of the main bene¯ts of SPIN is that arbitrary SPARQL queries and thus con-

straint checks are representable as RDF triples. SPIN provides a vocabulary,

the SPIN SPARQL Syntax, to model SPARQL queries in RDF [32]. An RDF

208 T. Hartmann et al.

representation of constraint checks enables that (1) they can be consistently stored

together with ontologies, constraints, and the data, (2) they can easily be shared on

the Web of Data, (3) they can directly be processed by a plethora of already existing

RDF tools, (4) they are linkable to constraints and RDF data, and (5) the validation

of RDF data can automatically be executed by SPARQL execution engines.

As for the CONSTRUCT part of the SPARQL CONSTRUCT query, SPIN also

represents the WHERE clause in RDF, i.e., the actual check if constraints of a given

type hold for the data. The subsequent code snippet demonstrates how SPIN

represents SPARQL 1.1 NOT EXISTS [33] ¯lter expressions in RDF (FILTER NO

EXISTS f ?book author ?person g) using the RDF Turtle syntax:

1 [a sp:Filter ;
2 sp:expression [
3 a sp:notExists ;
4 sp:elements (
5 [sp:subject [sp:varName "book"] ;
6 sp:predicate author ;
7 sp:object [sp:varName "person"]])]])

As the mapping of a DSCL to SPIN is de¯ned for all constraint types supported

by the DSCL and hence independently of concrete constraints, constraints of all

these types are generally checked for each instance of the generic class ToValidate.

Therefore, the WHERE clause of a template always has to be restricted to classes for

which concrete constraints are actually de¯ned ��� in the case of DSP, the resource

classes substituting the SPARQL variable ?resourceClass:

1 WHERE { ?subject rdf:type ?resourceClass . }

6. Evaluation

In this section, based on an automatic constraint checking of a large amount of RDF

data sets, we formulate several ¯ndings to gain valuable insights and make recom-

mendations to direct the further development of constraint languages.

Despite the large volume of the evaluated data sets in general, we have to keep in

mind that in this study we only validate data against constraints for three vocab-

ularies. We took all well-established and newly developed SBE vocabularies into

account and de¯ned constraints for the three vocabularies of them, which are most

commonly used in the SBE sciences. For these three vocabularies, large data sets

have already been published. For other SBE vocabularies, however, there is often not

(yet) enough data openly available to draw general conclusions. Yet, these three

vocabularies are representative, cover di®erent aspects of SBE research data, and are

also a mixture of widely adopted, accepted, and well-established vocabularies (QB

and SKOS) on the one side and a vocabulary under development (DDI-RDF) on the

other side.

Directing the Development of Constraint Languages 209

As the evaluation is based on only three vocabularies, we cannot make valid

general statements for all vocabularies, but we can formulate several ¯ndings and

make recommendations to direct the further development of constraint languages.

As these ¯ndings cannot be proved yet, they still have to be veri¯ed or falsi¯ed by

evaluating the quality of RDF data represented by further well-established and

newly developed vocabularies ��� used within the SBE sciences and other domains.

6.1. Experimental setup

On the three vocabularies DDI-RDF, QB, and SKOS, we collected 115 constraints,a

either from the vocabularies themselves or from several domain experts, and classi-

¯ed and implemented them for data validation. We ensured that these constraints

are equally distributed over the sets and vocabularies we have. We then evaluated

the data quality of 15,694 data sets (4.26 billion triples) of SBE research data,

obtained from 33 SPARQL endpoints, by validating the data against these 115

constraints. Table 1 lists the number of validated data sets and the overall sizes in

terms of validated triples for each of the vocabularies.

We validated, i.a., (1) QB data sets published by the Australian Bureau of Sta-

tistics, the European Central Bank, and the Organisation for Economic Co-opera-

tion and Development, (2) SKOS thesauri like the AGROVOC Multilingual

agricultural thesaurus, the STW Thesaurus for Economics, and the Thesaurus for

the Social Sciences, and (3) DDI-RDF data sets provided by the Microdata Infor-

mation System, the Data Without Boundaries Discovery Portal, the Danish Data

Archive, and the Swedish National Data Service. In a technical report, we describe

the evaluation in further detail for each vocabulary, queried SPARQL endpoint, and

constraint [34]. Furthermore, we have published the evaluation results for each QB

data set in form of one document per SPARQL endpoint.b

6.2. Evaluation results and formulation of ¯ndings

Tables 2 and 3 show the results of the evaluation, more speci¯cally the numbers

of constraints and constraint violations, which are caused by these constraints,

a Implementations of all 115 constraints are online available at: https://github.com/github-thomas-

hartmann/phd-thesis/tree/master/chapter/chapter-9/constraints

Table 1. Number of validated data sets

and triples for each vocabulary.

Vocabulary Data sets Triples

QB 9;990 3;775;983;610

SKOS 4;178 477;737;281
DDI-RDF 1;526 9;673;055

bOnline available at: https://github.com/github-thomas-hartmann/phd-thesis/tree/master/chapter/

chapter-9/evaluation/data-sets/QB

210 T. Hartmann et al.

in percent; whereas the numbers in the ¯rst line indicate the absolute amount of

constraints and violations. The constraints and their raised violations are grouped by

vocabulary, which type of language the types of the constraints are formulated with,

and their severity level.

The numbers of validated triples and data sets di®er between the vocabularies as

we validated 3.8 billion QB, 480 million SKOS, and 10 million DDI-RDF triples. To

be able to formulate ¯ndings which apply for all vocabularies, we only use normalized

relative values representing the percentage of constraints and violations belonging

to the respective sets.

There is a strong overlap between RDFS/OWL and Constraint Language Based

constraint types as in many cases constraint types are expressible by RDFS/OWL

and classical constraint languages. This is the reason why the percentage values of

constraints and violations grouped by the classi¯cation of constraint types according

to the expressivity of constraint language types do not accumulate to 100%.

Almost 2/3 of all constraints, nearly 1/3 of the DDI-RDF, 60% of the QB, and all

SKOS constraints are SPARQL Based. For well-established vocabularies, the most

formulated constraints are SPARQL Based (80%). For newly developed vocabu-

laries, however, the most expressed constraints are RDFS/OWL Based (2/3). Nearly

Table 2. Evaluation results (1).

DDI-RDF QB

C CV C CV

78 3,575,002 20 45,635,861

SPARQL 29.5 34.7 60.0 100.0

CL 64.1 65.3 40.0 0.0

RDFS/OWL 66.7 65.3 40.0 0.0

info 56.4 52.6 0.0 0.0
warning 11.5 29.4 15.0 99.8

error 32.1 18.0 85.0 0.3

C (constraints), CV (constraint violations).

Table 3. Evaluation results (2).

SKOS Total

C CV C CV

17 5,540,988 115 54,751,851

SPARQL 100.0 100.0 63.2 78.2
CL 0.0 0.0 34.7 21.8

RDFS/OWL 0.0 0.0 35.6 21.8

info 70.6 41.2 42.3 31.3

warning 29.4 58.8 18.7 62.7

error 0.0 0.0 39.0 6.1

C (constraints), CV (constraint violations).

Directing the Development of Constraint Languages 211

80% of all violations are caused by SPARQL, 1/5 by Constraint Language, and 1/5

by RDFS/OWL Based constraints.

Finding 1. The facts that 80% of all violations are raised by SPARQL Based con-

straints and that 2/3 of all constraints are SPARQLBased, increases the importance to

formulate constraints, which up to now can only be expressed in SPARQL, using high-

level constraint languages. Data quality can be signi¯cantly improved when suitable

constraint languages are developed which enable to de¯ne SPARQL Based constraints

in an easy, concise, and intuitive way. Thereby, the more elaborate a vocabulary is, the

more sophisticated and complex constraints are speci¯ed using SPARQL.

These constraints are of such complexity that up to now in most cases they can

only be expressed by plain SPARQL. It should be an incentive for language designers

to devise languages which are more intuitive than SPARQL in a way that also

domain experts, which are not familiar with SPARQL, can formulate respective

constraints.

Finding 2. The fact that only 1/5 of all violations result from RDFS/OWL Based

constraints, even though more than 1/3 of all constraints are RDFS/OWL Based,

indicates good data quality for all vocabularies with regard to their formal speci¯cations.

Finding 3. As more than 1/3 of all constraints are RDFS/OWL Based, the ¯rst step

to make progress in the further development of constraint languages is to cover the

constraint types which can already be formulated using RDFS and OWL.

While 2/3 of the DDI-RDF violations result from RDFS/OWL Based constraints,

QB and SKOS violations are only raised by SPARQL Based constraints.

Finding 4. For well-established vocabularies, RDFS/OWL Based constraints are

almost completely satis¯ed which generally indicates very impressive data quality, at

least in the SBE domain and for the basic requirements. For newly developed vocabu-

laries, however, data quality is poor as RDFS/OWLBased constraints are not ful¯lled.

For DDI-RDF, data providers still have to understand the vocabulary and of

course data cannot have high quality if the speci¯cation is not yet stable. It is likely

that a newly developed vocabulary is still subject of constant change and that early

adopters did not properly understand its formal speci¯cation. Thus, published data

may not be consistent with the current draft of its conforming vocabulary.

When vocabularies under development turn into well-established ones, data pro-

viders are experienced in publishing their data in conformance with these vocabularies

and formal speci¯cations are more elaborated. As a consequence, RDFS/OWL Based

constraints are satis¯ed to a greater extend which leads to better data quality.

The reason why we only de¯ned SPARQL Based constraints on SKOS for

assessing the quality of thesauri is that literature and practice especially concentrate

on evaluating graph-based structures of thesauri by applying graph- and network-

analysis techniques which are of such complexity that they can only be implemented

in SPARQL.

212 T. Hartmann et al.

Almost 40% of all constraints are error, more than 40% are informational, and

nearly 20% are warning constraints. Informational constraints caused approximately

1/3 and warning constraints narrowly 2/3 of all violations.

Finding 5. Although 40% of all constraints are error constraints, the percentage of

severe violations is very low, compared to about 2/3 of warning and 1/3 of infor-

mational violations. This implies that data quality is high with regard to the severity

level of constraints and that proper constraint languages can signi¯cantly improve

data quality beyond fundamental requirements.

We did not detect violations of error constraints for well-established vocabularies,

even though 85% of the QB constraints are error constraints. More than 50% of the

DDI-RDF constraints and more than 70% of the SKOS constraints are informational

constraints. 1/6 of the DDI-RDF violations are caused by error constraints and

almost all QB and 59% of the SKOS violations are caused by warning constraints.

Finding 6. For well-established vocabularies, data quality is high as serious viola-

tions rarely appear (0.3% for QB). For newly developed vocabularies, however, data

quality is worse as serious violations occur partially (1/6 for DDI-RDF).

Especially for vocabularies under development, constraint languages should be

used to a larger extend in addition to RDFS/OWL in order to de¯ne appropriate

constraints to detect and solve severe violations.

80% of the violations, which are raised by either RDFS/OWL or Constraint

Language Based constraints, are caused by constraints with the severity level in-

formational (see Table 4) and almost all (94%) of the violations, which are caused by

SPARQL Based constraints, are raised by warning constraints. Approximately 1/2

of all constraints are informational constraints regardless how their types are clas-

si¯ed according to the expressivity of constraint language types.

Finding 7. Whatever language is used to formulate constraints, 1/2 of all constraints

are informational, 1/3 are error, and 1/5 are warning constraints.

The fact, that regardless of the language used to specify constraints, 1/2 of all

constraints are informational indicates the importance that constraint languages

support constraints on multiple levels. Constraints are by far not only used to

Table 4. Constraints and violations by language type and

severity.

RDFS/OWL CL SPARQL

C CV C CV C CV

info 52.5 79.64 55.2 79.60 45.1 4.39

warning 18.0 20.28 15.5 20.27 19.6 94.17
error 29.5 0.08 29.3 0.13 35.3 1.43

C (constraints), CV (constraint violations).

Directing the Development of Constraint Languages 213

prevent certain usages of a vocabulary, they are rather needed to provide better

guidance for improved interoperability.

Finding 8. Regardless of the type of the used language, there are only a few violations

raised by error constraints which stands for good data quality in general. In contrast,

constraints of low severity, expressible by RDFS/OWL or high-level constraint lan-

guages, are violated to a large extent (80%), whereas more serious warning con-

straints, only expressible by SPARQL, are violated to an even larger extend (94%).

94% of the violations caused by SPARQL Based constraints are warnings, which

means that data quality could be signi¯cantly improved when solving these quite

serious violations. We claim that this is more likely when these SPARQL Based

constraints are not only expressible by plain SPARQL but also by high-level con-

straint languages enabling to formulate such constraints in a more intuitive and

concise way.

7. Conclusion and Future Work

We captured 115 constraints on three vocabularies commonly used within the social,

behavioral, and economic (SBE) sciences (DDI-RDF, QB, and SKOS), either from the

vocabularies themselves or from several domain experts, and classi¯ed them based on

by which of the three types of constraint languages (RDFS/OWL Based, Constraint

Language Based, and SPARQL Based) their constraint types can be expressed.

In addition, we let the domain experts classify each constraint according to the

severity of its violation. Although we provide default severity levels for each con-

straint, validation environments should enable users to adapt the severity levels of

constraints according to their individual needs. We simplify the classi¯cation system

of log messages in software development and di®erentiate between the three severity

levels informational, warning, and error.

By validating against these constraints, we evaluated the data quality of 15,694

data sets (4.26 billion triples) of SBE research data, obtained from 33 SPARQL

endpoints. This way, we gain a better understanding about the role of certain con-

straint types for assessing the quality of RDF data and therefore the usability of

identi¯ed constraint types for determining RDF data quality.

Based on the evaluation results, we formulated several ¯ndings to direct the

further development of constraint languages. The general applicability of these

¯ndings, however, is still to be con¯rmed beyond the examined vocabularies and for

other domains. The main ¯ndings are:

(1) Data quality can be signi¯cantly improved when suitable constraint languages are

developed enabling to de¯ne constraints— which up to now can only be expressed

by plain SPARQL — in an easy, concise, and intuitive way. Thereby, the more

elaborate a vocabulary is, the more sophisticated and complex constraints are

necessary, which in most cases can only be speci¯ed in SPARQL.

214 T. Hartmann et al.

(2) As only 1/5 of all violations result from constraints which are expressible

in RDFS or OWL, even though 1/3 of all constraints are representable in

RDFS/OWL, data quality is high for all vocabularies with regard to their formal

speci¯cations.

(3) Although 40% of all constraints are associated with the severity level error, the

percentage of severe violations is very low — compared to about 2/3 of warning

and 1/3 of informational violations. This implies that data quality is high with

regard to the severity of constraints and that proper constraint languages can

signi¯cantly improve data quality beyond fundamental requirements.

(4) Whatever language is used to formulate constraints, 1/2 of all constraints are

informational, 1/3 are error, and 1/5 are warning constraints. This fact

emphasizes the importance that constraint languages support multiple levels of

severity.

(5) Violations caused by constraints representable by RDFS/OWL or high-level

constraint languages are of low severity, whereas the violation of constraints, only

expressible in SPARQL, is more serious. This is the reason why there is a sig-

ni¯cant demand for high-level constraint languages that support the expression of

constraints which up to now can only be formulated by plain SPARQL.

We have been really impressed by the high quality of the QB and SKOS data. This

is in contrast to the sometimes heard rumor that Linked Open Data lacks quality.

We are actively involved in the further development and implementation of con-

straint languages and will use the results presented in the paper to set priorities on

features where we expect the highest impact on the data quality of real-life data

in the SBE domain. As the use of constraint languages per se enhances data quality,

it must be continued working intensively on their further development.

The major di®erences between this journal paper and the extended conference

paper [35] are that we (1) give an in-depth description of common vocabularies in the

SBE sciences, (2) delineate a complete running example how SBE sciences data and

metadata is represented in RDF, and (3) describe in detail how we implemented our

validation environment.

References

[1] T. Bosch and K. Eckert, Towards description set pro¯les for RDF using SPARQL as
intermediate language, in Proc. of the 14th DCMI Int. Conf. on Dublin Core and
Metadata Applications, Austin, Texas, USA, 2014.

[2] ���������, Requirements on RDF constraint formulation and validation, in Proc. of the
14th DCMI Int. Conf. on Dublin Core and Metadata Applications, Austin, Texas, USA,
2014.

[3] R. Cyganiak and D. Reynolds, The RDF data cube vocabulary, W3C, W3C Recom-
mendation, 2014.

[4] R. Cyganiak, S. Field, A. Gregory, W. Halb and J. Tennison, Semantic statistics:
Bringing together SDMX and SCOVO, in Proc. of the Int. World Wide Web Conference,
Workshop on Linked Data on the Web, 2010.

Directing the Development of Constraint Languages 215

[5] R. Cyganiak, C. Dollin and D. Reynolds, Expressing statistical data in RDF with SDMX-
RDF, Tech. Rep., 2010.

[6] M. Hausenblas, D. Ayers, L. Feigenbaum, T. Heath, W. Halb and Y. Raimond, The
statistical core vocabulary (SCOVO), Digital Enterprise Research Institute (DERI),
DERI Speci¯cation, 2012.

[7] M. Hausenblas, W. Halb, Y. Raimond, L. Feigenbaum and D. Ayers, SCOVO: Using
statistics on the web of data, in Proc. of the 6th European Semantic Web Conf. on the
Semantic Web: Research and Applications.

[8] D. Vrandecic, C. Lange, M. Hausenblas, J. Bao and L. Ding, Semantics of governmental
statistics data, in Proc. of the 2nd Int. ACM Web Science Conf.

[9] J. Wackerow, L. Hoyle and T. Bosch, Physical data description, DDI Alliance, DDI
Alliance Speci¯cation, 2016.

[10] M. Vardigan, P. Heus and W. Thomas, Data documentation initiative: Toward
a standard for the social sciences, Int. J. Digital Curation 3(1) (2008) 107–113.

[11] T. Bosch, R. Cyganiak, J. Wackerow and B. Zapilko, DDI-RDF discovery vocabulary:
A vocabulary for publishing metadata about data sets (research and survey data) into
the web of linked data, DDI Alliance, DDI Alliance Speci¯cation, 2016.

[12] A. Miles and S. Bechhofer (Eds.), SKOS Simple Knowledge Organization System ref-
erence, W3C, W3C Recommendation, 2009.

[13] A. Isaac and E. Summers, SKOS Simple Knowledge Organization System Primer, W3C,
W3C Working Group Note, 2009.

[14] A. Miles and S. Bechhofer, SKOS Simple Knowledge Organization System Extension for
Labels (SKOS-XL), W3C, W3C Recommendation, 2009.

[15] F. Cotton, XKOS ��� a SKOS extension for representing statistical classi¯cations, DDI
Alliance, DDI Alliance Speci¯cation, 2015.

[16] F. Cotton, R. Cyganiak, R. Grim, D. W. Gillman, Y. Jaques and W. Thomas, XKOS: A
SKOS extension for statistical classi¯cations, in Proc. of the 59th World Statistics
Congress of the Int. Statistical Institute, The Hague, The Netherlands, 2013.

[17] D. W. Gillman, F. Cotton and Y. Jaques, Extended Knowledge Organization System
(XKOS), United Nations Economic Commission for Europe (UNECE), Geneva, Swit-
zerland, Work Session on Statistical Metadata, 2013.

[18] C. Mader, B. Haslhofer and A. Isaac, Finding quality issues in SKOS vocabularies,
in Proc. of the Second Int. Conf. on Theory and Practice of Digital Libraries, 2012,
pp. 222–233.

[19] B. Motik, I. Horrocks and U. Sattler, Adding integrity constraints to OWL, in Proc. of
the 2007 Workshop on OWL: Experiences and Directions, Vol. 258, Innsbruck, Austria,
2007.

[20] ���������, Bridging the gap between OWL and relational databases, Journal of Web
Semantics 7(2) (2009) 74–89.

[21] J. Tao, E. Sirin, J. Bao and D. L. McGuinness, Integrity constraints in OWL, in Proc.
of the 24th AAAI Conf. on Arti¯cial Intelligence, Atlanta, Georgia, USA, 2010.

[22] P. F. Patel-Schneider, Using description logics for RDF constraint checking and closed-
world recognition, in Proc. of the 29th AAAI Conf. on Arti¯cial Intelligence, Austin,
Texas, USA, 2015.

[23] T. Hartmann, B. Zapilko, J. Wackerow and K. Eckert, Constraints to validate RDF data
quality on common vocabularies in the social, behavioral, and economic sciences,
Computing Research Repository (CoRR), Vol. abs/1504.04479, 2015.

[24] M. Schneider, OWL 2 web ontology language rdf-based semantics, W3C, W3C Rec-
ommendation, 2009.

216 T. Hartmann et al.

[25] C. Lutz, C. Areces, I. Horrocks and U. Sattler, Keys, nominals, and concrete domains,
Journal of Arti¯cial Intelligence Research 23(1) (2005) 667–726.

[26] E. Sirin and J. Tao, Towards integrity constraints in OWL, in Proc. of the 6th Int.
Workshop on OWL: Experiences and Directions, 8th Int. Semantic Web Conf.

[27] R. Angles and C. Gutierrez, The expressive power of SPARQL, in The Semantic Web ���
ISWC 2008, ser. Lecture Notes in Computer Science, Vol. 5318, 2008, pp. 114–129.

[28] W. Taha, Domain-speci¯c languages, in Proc. of the 15th Int. Conf. on Computer En-
gineering and Systems, Houston, Texas, USA, 2008.

[29] M. Fowler, Domain-Speci¯c Languages, ser. Addison-Wesley Signature Series (Pearson
Education, 2010).

[30] A. Raja and D. Lakshmanan, Domain speci¯c languages, Int. Journal of Computer
Applications 1(21) (2010) 99–105.

[31] M. Mernik, J. Heering and A. M. Sloane, When and how to develop domain-speci¯c
languages, ACM Computing Surveys 37(4) (2005) 316–344.

[32] H. Knublauch, SPIN ��� SPARQL Syntax, W3C, W3C Member Submission, February
2011, http://www.w3.org/Submission/2011/SUBM-spin-sparql-20110222/.

[33] S. Harris and A. Seaborne, SPARQL 1.1 query language, W3C, W3C Recommendation,
2013.

[34] T. Hartmann, B. Zapilko, J. Wackerow and K. Eckert, Evaluating the quality of RDF
data sets on common vocabularies in the social, behavioral, and economic sciences,
Computing Research Repository (CoRR), Vol. abs/1504.04478, 2015.

[35] ���������, Validating RDF data quality using constraints to direct the development of
constraint languages, in Proc. of the 10th Int. Conf. on Semantic Computing.

Directing the Development of Constraint Languages 217

	Directing the Development of Constraint Languages by Checking Constraints on RDF Data
	1. Introduction
	2. Common Vocabularies in the SBE Sciences
	2.1. Vocabularies for representing multi-dimensional aggregated data and its metadata
	2.2. Vocabulary for representing metadata on data in tabular format
	2.3. Vocabulary for representing metadata on unit-record data
	2.4. Vocabularies for representing knowledge organization systems and formal statistical classifications

	3. Related Work
	4. Classification of Constraint Types and Constraints
	4.1. Classification of constraint types according to the expressivity of constraint language types
	4.2. Classification of constraints according to the severity of constraint violations
	4.3. Classification examples

	5. Implementation
	5.1. Connect SPIN to your data
	5.2. Mapping from a DSCL to SPIN
	5.2.1. Representing validation results as constraint violations in RDF
	5.2.2. Representing constraint checks in RDF

	6. Evaluation
	6.1. Experimental setup
	6.2. Evaluation results and formulation of findings

	7. Conclusion and Future Work
	References

