
254 Int. J. Metadata, Semantics and Ontologies, Vol. 8, No. 3, 2013

Copyright © 2013 Inderscience Enterprises Ltd.

How to accelerate the process of designing domain
ontologies based on XML schemas

Thomas Bosch* and Brigitte Mathiak
GESIS – Leibniz Institute for the Social Sciences,
68159 Mannheim, Germany
Email: thomas.bosch@gesis.org
Email: brigitte.mathiak@gesis.org
*Corresponding author

Abstract: Domain ontologies and XML Schemas serve to describe domain data models although
they follow different modelling goals. By lifting the syntactic level of XML documents and
validating XML Schemas to the semantic level of OWL ontologies and their RDF representations
in an automatic way, all the information located in the XML Schemas of the domains can be
reused by ontology engineers and domain experts to design domain ontologies from scratch. As
this approach supports all components of the XML Schema metamodel, it is ensured that
unexceptionally any XML Schema can be converted into a generated ontology. As structures of
generated ontologies might be quite complex, domain ontologies can be inferred automatically by
means of SWRL rules. Saved time and effort can then be used to add domain-specific semantic
information, not covered by underlying XML Schemas, to the domain ontologies.

Keywords: ontology design; domain ontologies; domain ontologies design; generated ontologies;
XML Schemas; XSD; XML Schema metamodel; XML; semantic web; linked data; OWL; RDF;
SWRL rules; metadata; semantics; ontologies.

Reference to this paper should be made as follows: Bosch, T. and Mathiak, B. (2013) ‘How to
accelerate the process of designing domain ontologies based on XML schemas’, Int. J. Metadata,
Semantics and Ontologies, Vol. 8, No. 3, pp.254–266.

Biographical notes: Thomas Bosch is a PhD student at GESIS, the Leibniz Institute for the
Social Sciences. He received his master’s degree in Information Systems from the Technical
University of Munich. The topic of his PhD project is to develop an approach to accelerate the
process of designing domain ontologies from scratch when XML Schemas, describing these
domains, are already available. He contributes to the development of an ontology of the Data
Documentation Initiative, an acknowledged international standard for the documentation and
management of data from the social, behavioural, and economic sciences.

Brigitte Mathiak did her PhD at the TU Braunschweig in Germany. Currently she holds a
position as a PostDoc at GESIS – Leibniz Institute for the Social Sciences leading the Semantic
Data Enrichment team.

This paper is a revised and expanded version of a paper entitled ‘Generic multilevel approach
designing domain ontologies based on XML Schemas’ presented at the ‘Workshop Ontologies
Come of Age in the Semantic Web, 10th International Semantic Web Conference’, Bonn,
Germany, 23–27 October 2011.

1 Introduction

XML documents are commonly used to store and transfer
information in distributed environments. XML documents
may be instances of XML Schemas (XSDs) determining
their terminology and syntactic structure. XML represents a
large set of information within the context of various
domains and has reached wide acceptance as standard data
exchange format. This has driven the development of the
proposed approach. Both data and metadata, structured by
ontologies, can be published in the increasingly popular and
widely adopted LOD cloud to get linked with a huge
number of other RDF datasets of different topical domains.1

As RDF is an established standard, there is a plethora of
tools which can be used to interoperate with data and
metadata represented in RDF.

XSD and OWL follow different modelling goals. On the
one hand, the XML data model describes the terminology
and the syntactic structure of XML documents, a node
labelled tree.2 OWL, on the other hand, is based on formal
logic and on the subject-predicate-object triples from
RDF. OWL specifies semantic information about specific
domains, describes relations between domain classes and
thus, allows the sharing of conceptualisations. More
effective and efficient cooperation between individuals and
organisations are possible if they agree on a common syntax

 How to accelerate the process of designing domain ontologies based on XML schemas 255

(specified by XSDs) and have a common understanding of
the domain classes (defined by OWL ontologies). XML is
intended to structure and exchange documents (document-
oriented), but is used to structure and exchange data
(data-oriented), a purpose for which it has not been
developed. Also, XSD languages concentrate on structuring
documents instead of structuring data. As OWL is used
for describing domain data models semantically, the
information needed to depict parts of these data models can
be extracted from underlying XSDs and reused as a basis to
extend the knowledge representation of particular domains
using OWL. We attempt to bridge the gap between XSD
and OWL by lifting the syntactic level of XML documents
to the semantic level of OWL ontologies.

Traditionally, ontology engineers work in close collaboration
with domain experts to design domain ontologies in a manual
manner which requires a lot of time and effort. Domain
ontologies and XSDs describe domain data models. In many
cases, XSDs are already defined and can therefore be reused
in the process of designing domain ontologies from scratch.
Saved time and manpower could be used more effectively to
enrich domain data models with additional domain-specific
semantic information, not or not satisfyingly covered by the
underlying XSDs. The main research question, how the time-
consuming process designing domain ontologies based on
already available XSDs could be accelerated, results from the
stated problem. An extensive evaluation of the proposed
approach verifies the appropriate hypothesis that the effort
and the time needed to deliver high quality domain ontologies
using the developed approach is much less than creating
domain ontologies in a completely manual way.

2 Related work

Several strategies lifting the syntactic level of XML documents
to the semantic level of OWL ontologies can be distinguished.
The authors clustered appropriate tools implementing these
transformations into three classes depending on the kind of
conversion either on the instance, the conceptual, or both, the
instance and the conceptual level.

On the instance level, Klein (2002) developed the so-called
RDF Schema mapping ontology enabling a one-way mapping
of XML documents to RDF. Relevant content of XML
documents can be identified. As extension to this approach,
Battle (2006) has introduced a bidirectional mapping of XML
components to RDF. The WEESA system implements an
automatic transformation from XML to RDF using an OWL
ontology, manually created from corresponding XSDs and
manually defined rules. XML document instances are not
mapped to OWL equivalents (Reif et al., 2005). O’Connor
and Das (2010) developed an approach transforming XML
documents to individuals of an OWL ontology describing the
serialisation of the XML document. SWRL is used to map
these instances to individuals of a domain ontology.

On the conceptual level, there is a distinction between
approaches converting XSD languages into RDFS or OWL.
Several languages for writing schemas like DTD, XSD,

DSD (Karlund et al., 2000) and Relax NG (Clark et al.,
2003) exist. The prototype OntoLiFT (Volz et al., 2003)
offers a generic means for converting arbitrary XSD
languages into RDFS ontologies semi-automatically. In a
first step, XSD languages are transformed into regular tree
grammars consisting of non-terminals, terminals, start
symbols and production rules (Murata et al., 2005). In a
second step, non-terminals and terminals are converted into
RDFS classes and production rules are mapped to RDF
properties. In comparison with the proposed approach,
OntoLiFt converts any XSD language and not just the
specific one XSD into ontologies. Anicic et al. (2007)
evolved an approach based on metamodels transforming
between the different models of XSD and OWL.

On the instance and the conceptual level, there are
methods transforming XML to RDF and XSD to either
RDFS or OWL. Within the EU-funded project called
‘Harmonise’ the interoperability of existing standards for
the exchange of tourism data has been achieved by the
transformation of XML documents and XSDs into RDF
and RDFS ontologies which have been mapped to each
other (Dell’Erba et al., 2002). Using the approach of
O’Connor and Das (2011), XML document instances are
transformed into OWL ontologies even though associated
XSDs do not exist. As a consequence, unstructured contents
can be mapped to OWL ontologies as well. XSDs can also
be mapped to OWL ontologies, as XSD documents are
represented in XML, too. New OWL ontologies can be
generated from scratch and existing ones can be extended.
O’Connor and Das evolved XML Master, a language
describing OWL ontologies declaratively. XML Master
combines the Manchester OWL Syntax3 and XPath to refer
to XML content. O’Connor and Das criticise the limited
and unsatisfactory number of OWL constructs supported
by current tools converting XSDs into OWL ontologies.
Thus, all OWL constructs are covered. One shortcoming
associated with this method is that the mapping language
expressions have to be written manually and therefore,
XML documents and XSDs cannot be transformed into
OWL ontologies automatically. Another drawback is that
ontology engineers have to be familiar with the Manchester
OWL Syntax and XPath to express the mappings. Ferdinand
et al. (2004) propose both mappings from XML to RDF
and XSD to OWL which are independent of each other.
This means, OWL individuals do not necessarily correspond
to the OWL conceptual model, since declarations and
definitions of XML documents may be transferred to
differing OWL constructs. In addition, another system can
be stated which transfers XSD components to OWL
language constructs at the terminological level and XML
document instances to OWL individuals at the assertional
level. XPath expressions are applied selecting XML
documents’ content (Kobeissy et al., 2007). Besides that, the
approach of Tous et al. (2005) is very similar to the method
of Kobeissy, Genet, and Zeghlache. Bohring and Auer
(2005) devised a mapping between XML and RDF and
between XSD and OWL. The authors assume that XML
documents are structured like relational databases. Thus,
relational structures of XML documents are discovered and

256 T. Bosch and B. Mathiak

represented in OWL. Relations correspond to classes,
columns to properties, and rows to instances. XML data
model elements are mapped automatically to components
of the OWL data model. Named simple and complex types,
for instance, are transferred to classes. Elements containing
other elements or having at least one attribute, are converted
into classes and object properties between these classes.
Both elements, including neither attributes nor sub-
elements, and attributes, which are assumed to represent
database columns, are transformed into datatype properties
with the surrounding element as domain. Besides, XML
cardinality constraints are transformed into equivalent OWL
cardinality restrictions.

3 Proposed approach

Figure 1 visualises the concept of the devised generic multi-
level approach for designing domain ontologies based on
already available XSDs (Bosch and Mathiak, 2011).

XSDs determine the vocabulary, the terminology and
the syntactic structure of XML documents which are
instances of these XSDs. XSDs are instances of the XSD
metamodel. The components of the XSD abstract data
model, also called element information items (EIIs) in
the XML representation, are mapped to classes, universal
restrictions on datatype and object properties of a generic
ontology called the XSD Metamodel Ontology (XSDMO).
The intention of the devised approach is to convert XSDs
automatically into classes of generated ontologies, hasValue

restrictions on XSDMO’s datatype properties, and universal
restrictions on XSDMO’s object properties using XSLT
transformations. As each component of the XSD abstract
data model is covered by this approach, unexceptionally any
XSD can be translated into a generated ontology. On the
instance level, XML documents are mapped to ABoxes of
generated ontologies using a Java program as XSLT is less
powerful for this purpose. After these two transformation
processes, taking only seconds, all the information located
in the underlying XSDs of a particular domain is now
expressed in the generated ontologies and their RDF
representations can be published in the LOD cloud and be
linked to resources within different topical domains in the
web of data. As generated ontologies do not conform to the
highest quality requirements of domain ontologies, structures
of generated ontologies are quite complex, and OWL and
XSD follow different modelling goals, the generated
ontologies are not directly as useful as manually created
domain ontologies. Thus, the class axioms of generated
ontologies are intended to be further supplemented with
additional domain-specific semantic information, not defined
in underlying XSDs, in form of domain ontologies. These
domain ontologies can be deduced automatically out of the
generated ontologies using SWLR rules on the schema and
on the instance level. As a consequence, all XML data
conforming to XSDs can be imported automatically as
instances of domain ontologies. The effort and the time,
however, needed to deliver high quality domain ontologies
subsequently is much less than creating domain ontologies
completely manually.

Figure 1 Generic approach for designing domain ontologies based on XSDs

 How to accelerate the process of designing domain ontologies based on XML schemas 257

3.1 Novelty of approach

In comparison to previous general-purpose tools for
transforming XSDs into OWL ontologies, the novelty of the
devised approach is that the translation of XSDs into
generated ontologies is based on the XSD metamodel. The
majority of the tools are designed for transformation of
either XML into RDF on the assertional knowledge level or
schemas into ontologies on the terminological knowledge
level. The presented method follows a complete approach
converting content of XML documents into OWL
individuals and XSDs into OWL ontologies. Most tools try
extracting semantics directly out of XSDs. The suggested
approach, in contrast, only gains information about the
terminology and the syntactic structure of XML document
instances conforming to XSDs. Domain ontologies are
supplemented with domain-specific semantic information in
following steps. Many approaches convert XML to RDF
and/or XSD languages into ontologies in a manual or at
most in a semi-automatic way. This approach translates
XSDs and XML into OWL ontologies and their RDF
representations in a totally automatic way without any
manual modifications of the generated ontologies after the
translation process. In conjunction with associated domain
ontologies, the resulting ontologies are as usable as
ontologies that were completely constructed by hand, but
with a fraction of necessary effort. In addition, divers
existing methods generate RDFS ontologies and not the
more expressive OWL ontologies.

4 Mapping of the XSD metamodel to the
XSDMO

The XSD metamodel components are mapped to classes,
universal restrictions on datatype and object properties of
the generic XSDMO ontology. Table 1 sketches these
mappings which are described in this section.

Meta-EIIs

Meta-EIIs have been mapped to classes of the XSDMO
representing the meta-EIIs. The class ‘Element’, for instance,
stands for the XSD meta-model’s meta-EII ‘element’.

Attributes of meta-EIIs

Attributes of meta-EIIs have been mapped to datatype
properties ‘<attribute>_<domain meta-EII>_String’ with the
class standing for the domain meta-EII as domain and the
class representing the XSD built-in primitive datatype
‘string’ as range. Attributes of meta-EIIs have also
been mapped to universal restrictions on these datatype

properties: <domain meta-EII> ⊑  <attribute>_<domain
meta-EII>_String.String. The universal restrictions express
that the class including all domain meta-EII individuals is
defined as the sub-class of the anonymous complex super-

class of all the instances, which can only have relationships
along the datatype properties ‘<attribute>_<domain meta-
EII>_ String’ with individuals of the type ‘String’ or have
no relationships along these datatype properties.

Table 1 Mapping of XML schema metamodel to XML
schema metamodel ontology (XSDMO)

XML Schema Metamodel XSDMO

meta-EIIs classes: <meta-EII>

attributes of meta-EIIs

datatype properties and universal

restrictions: <domain meta-EII> ⊑ 
<attribute>_<domain meta-
EII>_String.String

any well-formed XML
content of meta-EIIs
Appinfo|Documentation

datatype properties and universal
restrictions: <Appinfo|Documentation >

⊑  any_<Appinfo|Documentation>
_String.String

texts contained in XML
document instances’
elements and attributes

datatype properties and universal

restrictions: <Element|Attribute> ⊑ 
value_<Element|Attribute>_String.
String

attributes of meta-EIIs
referring to meta-EIIs
(attributes ‘ref’,
‘substitutionGroup’,
‘refer’)

object properties and universal

restrictions: <domain meta-EII> ⊑ 
<ref|substitutionGroup|refer>_<domain
meta-EII>_<range meta-EII>.<range
meta-EII>

attributes of meta-
EIIs referring to type
definitions (attributes
‘type’ and ‘base’)

object properties and universal

restrictions: <domain meta-EII> ⊑ 
<type|base>_<domain meta-
EII>_Type.Type

attribute ‘memberTypes’

object property and universal
restriction:

 <union> ⊑  memberTypes_union_
Type.Type

meta-EIIs’ part-of
relationships

object properties and universal

restrictions: <domain meta-EII> ⊑ 
contains_<domain meta-EII>_<range
meta-EII>.<range meta-EII>

sequence of in meta-EII
‘sequence’ contained
meta-EIIs

object property and universal

restrictions: <sequence> ⊑ 
sequence.<range meta-EII>

The attribute ‘name’ of the meta-EII ‘element’, for example,
has been mapped to the datatype property ‘name_Element_
String’ and to the datatype property’s universal restriction

Element ⊑  name_Element_String.String, as elements can
only have ‘name_Element_String’ relationships to ‘String’
individuals.

Any well-formed XML content of meta-EIIs Appinfo|
Documentation

The meta-EIIs Appinfo and Documentation may comprise
any well-formed XML content such as XML elements,
XML attributes, and plain text. For this reason, any

258 T. Bosch and B. Mathiak

well-formed XML content of the meta-EIIs Appinfo and
Documentation is mapped to the datatype properties
‘any_<Appinfo| Documentation>_String’ and to the
universal restrictions on these datatype properties: <Appinfo

|Documentation > ⊑  any_<Appinfo| Documentation>_
String.String.

Texts contained in XML document instances’ elements and
attributes

Elements and attributes of XML documents may comprise
text. Thus, we have added the datatype properties
‘value_<Element|Attribute>_String’ and the datatype

properties’ universal restrictions <Element|Attribute> ⊑ 
value_<Element| Attribute>_String.String to the XSDMO.
On the instance level, the XML document excerpt <Label
lang="en">Age</Label> is converted into the property
assertions value_Element_String (Label-Individual…, ‘Age’)

and value_Attribute_String (Lang-Individual…, ‘en’).

Attributes of meta-EIIs referring to meta-EIIs (attributes
‘ref’, ‘substitutionGroup’, ‘refer’)

Meta-EIIs’ attributes like ‘ref’, ‘refer’, or
‘substitutionGroup’ referring to other meta-EIIs have been
mapped in the XSDMO to the object properties
‘<ref|substitutionGroup|refer>_ <domain meta-EII>_<range
meta-EII>’ and to the universal restrictions: <domain meta-

EII> ⊑  <ref|substitutionGroup|refer>_<domain meta-EII>
_<range meta-EII>.<range meta-EII>. Elements, for instance,
can only have ‘ref_Element_Element’ relationships to elements
according to the object property’s universal restriction Element

⊑  ref_Element_Element. Element.

Attributes of meta-EIIs referring to type definitions
(attributes ‘type’ and ‘base’)

Meta-EIIs’ attributes ‘base’ and ‘type’ refer to simple ur-
type, simple type, or complex type definitions. As a
consequence, these attributes would be mapped to six object
properties ‘<type|base>_<domain meta-EII>_SimpleType|
AnySimpleType|ComplexType’. XSLT trans-formations,
creating generated ontologies automatically out of XSDs,
would have to determine the object properties’ range classes
‘AnySimpleType’, ‘SimpleType’, and ‘ComplexType’ as
part of the object properties’ identifiers at runtime. If the
attributes ‘type’ or ‘base’ either point to simple or complex
type definitions, which are defined in external XSDs, these
XSDs would have to be physically available to traverse their
XML trees and to iterate over each simple and complex type
definition. But in many cases, external XSDs are not
physically available. Therefore, we have mapped the
attributes ‘type’ and ‘base’ to the object properties
‘<type|base>_<domain meta-EII>_Type’ with the range
class ‘Type’ representing the super-class of all three more

specific type definitions: simple ur-type, simple type, and
complex type definitions. The attributes ‘base’ and ‘type’
have also been mapped to the object properties’ universal

restrictions <domain meta-EII> ⊑  <type|base>_<domain
meta-EII>_Type.Type. Considering the object property’s

universal restriction Element ⊑  type_Element_Type.
Type, elements can only have ‘type_Element_Type’
relationships to ‘Type’ individuals (simple or complex type
definitions in this case) or have no such relations.

Attribute ‘memberTypes’

The attribute ‘memberTypes’ of the EII ‘union’ may include
simple ur-type and simple type definitions separated by
blank characters. This attribute has been mapped to the
object property ‘memberTypes_union_Type’ and to the

object property’s universal restriction <union> ⊑ 
memberTypes_union_Type.Type.

Meta-EIIs’ part-of relationships

Meta-EIIs may contain other meta-EIIs. For this reason the
object properties ‘contains_<domain meta-EII>_<range
meta-EII>’ and associated universal restrictions <domain

meta-EII> ⊑  contains_<domain meta-EII>_<range meta-
EII>.<range meta-EII> have been specified. In accordance

with the object property’s universal restriction Sequence ⊑
 contains_Sequence_ Element.Element, sequences can
only include elements along the object property
‘contains_Sequence_Element’ and no instances of other
classes.

Sequence of in meta-EII ‘sequence’ contained meta-EIIs

The universal restrictions on the object properties
‘contains_Sequence_<range meta-EII>’ state for each range
meta-EII (annotation, element, group, choice, and sequence)
that range instances have to be of the classes representing
these range meta-EIIs. The object property ‘sequence’ and

the object property’s universal restriction <sequence> ⊑ 
sequence.<range meta-EII> have been added to the
XSDMO enabling to capture the strict order of in EIIs
‘sequence’ contained EIIs by means of the mapping of
XSDs to generated ontologies.

5 Mapping of XSDs to generated ontologies

XSDs are translated into classes, hasValue restrictions on
XSDMO’s datatype properties, and universal restrictions
on XSDMO’s object properties. Table 2 demonstrates the
in this chapter delineated mappings of XSDs to OWL
generated ontologies. Bosch and Mathiak (2012) explain
the implementation of these mappings using XSLT
transformations in detail.

 How to accelerate the process of designing domain ontologies based on XML schemas 259

Table 2 Mapping of XML schemas to generated ontologies

XML Schemas Generated Ontologies

EIIs
sub-classes of XSDMO’s classes:

<EII> ⊑ <meta-EII>

values of EIIs’
attributes

hasValue restrictions on XSDMO’s

datatype properties: <domain EII> ⊑
 <attribute>_<domain meta-EII>_String.
{<String>}

any well-formed XML
content of EIIs
Appinfo|
Documentation

hasValue restrictions on XSDMO’s
datatype properties:

<Appinfo|Documentation > ⊑
 any_<Appinfo|Documentation>_String.
{<String>}

values of EIIs’
attributes referring to
EIIs (attributes ‘ref’,
‘substitutionGroup’,
‘refer’)

universal restrictions on XSDMO’s object

properties: <domain EII> ⊑
 <ref|substitutionGroup|refer>_<domain
meta-EII>_<range meta-EII>.<range EII>

values of EIIs’
attributes referring to
type definitions
(attributes ‘type’ and
‘base’)

universal restrictions on XSDMO’s object
properties:

<domain EII> ⊑
 <type|base>_<domain meta-
EII>_Type.<range EII>

values of attribute
‘memberTypes’

univeral restriction on XSDMO’s object

property: <union> ⊑
 memberTypes_Union_Type.<union of
Type EIIs>

EIIs’ part-of
relationships

universal restrictions on XSDMO’s object

properties: <domain EII> ⊑
 contains_<domain meta-EII>_<range
meta-EII>.<union of range EIIs>

sequence of in EII
‘sequence’ contained
EIIs

universal restrictions on XSDMO’s object

property: <sequence> ⊑ 
sequence.<union of EIIs>

EIIs

EIIs are transformed into sub-classes of the XSDMO’s

super-classes: <EII> ⊑ <meta-EII>. To show an example,
the XSD’s EII ‘element’ with the name ‘Label’
(<xs:element name="Label"/>) is converted into the class
‘Label-Element…’. This class is then defined as sub-class

of the super-class ‘Element’ (Label-Element… ⊑ Element),
as all ‘Label’ individuals are also part of the ‘Element’ class
extension.

Values of EIIs’ attributes

Values of EIIs’ attributes are translated into hasValue
restrictions on XSDMO’s datatype properties <domain EII>

⊑  <attribute>_ <domain meta-EII>_String.{<String>}, as
classes representing domain EIIs are defined as sub-classes
of the anonymous complex super-classes of all the
individuals which have at least one relationship along
the datatype properties ‘<attribute>_<domain meta-
EII>_String’ to the specified individuals of the XSD’s
primitive datatype ‘string’. The value of the attribute ‘name’

of the EII ‘element’ (<xs:element name="Label"/>) is
transformed into the datatype property hasValue restriction

Label-Element… ⊑  name_Element_String.{‘Label’}, as
‘Label’ elements must have at least one name which is
‘Label’ and of the type ‘string’.

Any well-formed XML content of EIIs Appinfo|
Documentation

Any well-formed XML content of the EIIs Appinfo and
Documentation such as XML elements, XML attributes, and
plain text is converted into hasValue restrictions on
XSDMO’s datatype properties <Appinfo| Documentation>

⊑  any_<Appinfo| Documentation>_String.{<String>}.
The text contained in the EII ‘appinfo’ (<xs:appinfo>This is
an application information.</xs:appinfo>) is converted into

the datatype property hasValue restriction Appinfo1… ⊑ 
any_Appinfo_String.{‘This is an application information.’}.

Values of EIIs’ attributes referring to EIIs (attributes ‘ref’,
‘substitutionGroup’, ‘refer’)

Values of EIIs’ attributes ‘ref’, ‘substitutionGroup’, and
‘refer’ referring to other EIIs, are translated into XSDMO’s

object properties’ universal restrictions <domain EII> ⊑ 
<ref|substitutionGroup|refer>_<domain meta-EII>_<range
meta-EII>.<range EII>. The reference to the global element
‘Label’ (<xs:element ref="Label"/>), for instance, is
converted into the object property’s universal restriction

Label-Element-Reference1… ⊑  ref_Element_Element.
Label-Element….

Values of EIIs’ attributes referring to type definitions
(attributes ‘type’ and ‘base’)

Values of EIIs’ attributes ‘type’ and ‘base’ referring to
simple ur-type, simple type, or complex type definitions are
converted into universal restrictions on XSDMO’s object

properties: <domain EII> ⊑  <type|base>_<domain meta-
EII>_Type.<range EII>. The value ‘VariableType’ of the
attribute ‘type’ of the EII ‘element’ with the name
‘Variable’ (<xs:element name="Variable" type="Variable
Type"/>), for example, is transformed into the object

property’s universal restriction Variable-Element… ⊑ 
type_Element_Type.VariableType-Type….

Values of attribute ‘memberTypes’

The attribute ‘memberTypes’ of the EII ‘union’ may contain
multiple simple ur-type and simple type definitions
separated by blank characters. Consequently, the value of
this attribute is converted into the XSDMO’s object

property’s universal restriction <union> ⊑  member
Types_Union_Type.<union of Type EIIs>. The attribute
‘memberTypes’, for instance, contains references to one
simple ur-type and two simple type definitions (<xs:union
memberTypes = "SimpleType1 SimpleType2 xs:string"/>).
The value of the attribute ‘memberTypes’ is translated
into the object property’s universal restriction Union1…

260 T. Bosch and B. Mathiak

⊑  memberTypes_Union_Type. (SimpleType1-Type… ⊔

SimpleType2-Type… ⊔ string-Type…).

EIIs’ part-of relationships

Because EIIs may include one to multiple EIIs, universal

restrictions on XSDMO’s object properties <domain EII> ⊑
 contains_<domain meta-EII>_<range meta-EII>.<union
of range EIIs> are used to map EIIs’ part-of relationships.
To state an example, the following sequence contains only
one ‘element’ EII, a reference to the global element ‘Label’:
<xs:sequence> <xs:element ref=”Label”/> </xs:sequence>.
According to the object property’s universal restriction

Sequence1… ⊑  contains_ Sequence_Element.Label-
Element-Reference1…, the range of the object property can
only comprise instances of one class representing the
reference to the global element ‘Label’. If EIIs have more
than one EII as content, the domain EIIs can only
have relationships along particular object properties to
individuals of the anonymous complex super-class
consisting of the union of multiple classes representing the
contained range EIIs. The part-of relationship of the
sequence (<xs:sequence> <xs:element ref = ”Variable
Name”/> <xs:element ref=”Label”/> </xs:sequence>) is
transferred into the object property’s universal restriction

Sequence1… ⊑  contains_Sequence_Element.(Variable

Name-Element-Reference1… ⊔ Label-Element-Reference
2…).

Sequence of in EII ‘sequence’ contained EIIs

According to the universal restrictions on the object
properties ‘contains_Sequence_Element| Sequence’,
sequence individuals can only have relationships along
these object properties to element|sequence instances.
Sequences may not only include either element or sequences
but also annotations, groups, and choices simultaneously.
Furthermore, sequences are not only containers of multiple
classes’ individuals. They also store the strict order of
contained EIIs. As instances of different classes may be
contained and to store the strict order of included EIIs, we
added the object property ‘sequence’ and the universal

restrictions <sequence> ⊑  sequence.<union of EIIs> to
the XSDMO. In our example, sequence individuals either

contain VariableName or Label individuals: Sequence1… ⊑

 sequence. (VariableName-Element-Reference1… ⊔
Label-Element-Reference2…). The sequence is extracted
implicitly in compliance with the order of the union
operands.

6 Derivation of domain ontologies and linking to
external ontologies

So far, XSDs, describing specific domain data models and
determining the syntactic structure of appropriate XML
documents, are converted automatically into OWL
generated ontologies using XSLT transformations, and

XML document instances are translated into an RDF
representation of the generated ontologies. Subsequently,
domain ontologies are inferred both on the schema and the
instance level out of these generated ontologies in an
automatic manner using SWRL rules which are executed by
rule engines like Pellet, the OWL 2 reasoner for Java.4 The
antecedents of SWRL rules are specified according to the
syntactic structures of XML document instances, storing
particular domains’ data and meta-data. The consequents of
SWRL rules, however, are defined corresponding to the
domain ontologies’ conceptual models. Thus, to define
SWRL rules, ontology engineers have to devise the domain
ontologies’ conceptual models with the help of domain
experts in a first stage. Generated ontologies and therefore
XSDs’ structures can be very complex and thus are not
intended for information retrieval tasks specified and
executed by users. When domain ontologies are derived,
users can perform queries on domain ontologies using
intuitive semantics of the particular domain without
knowledge of complex XSDs’ structures. Although SWRL
rules work completely on the schema level, both
terminological and assertional knowledge can be deduced.
Domain ontologies’ classes can be annotated as equivalent
to classes of existing accepted and widely adopted external
ontologies such as SKOS or Dublin Core. The resulting
benefit is that reasoners may use additional semantic
information defined in external ontologies for their
deductions (Kupfer et al., 2007).

7 Use case

To get a better idea of how XSDs and XML documents are
translated into generated ontologies’ TBoxes and ABoxes
and of how domain ontologies are derived out of these
generated ontologies on the schema and on the instance
level, we show a complete use case covering the most
important mappings and motivating the approach’s
application. Bosch et al. (2011) have discussed use cases
associated with a DDI ontology and Bosch et al. (2012)
delineate its conceptual model. The Data Documentation
Initiative (DDI)5 is an acknowledged international standard
for the documentation and management of data from the
social, behavioural, and economic sciences. In this use case,
excerpts of the DDI ontology are deduced out of the
underlying XSDs describing this particular domain. More
specifically, it will be derived that a certain resource is a
social science variable with a particular variable label, if
specific conditions are fulfilled.

Domain ontologies are derived out of generated
ontologies resulting from XSDs within seconds by means of
XSLT. Because of the complexity of XSDs’ structures and
as XSDs may not contain all the information domain experts
want to express in a domain ontology, the generated
ontologies’ complexity is then reduced and the generated
ontologies are extended in form of domain ontologies
by additional domain-specific semantic information not
directly covered by the XSDs.

 How to accelerate the process of designing domain ontologies based on XML schemas 261

7.1 XML and XSD

Figure 2 visualises the XML document (on the right), storing
information about variables, and the XSD, determining the
XML’s syntactic structure.

XML elements ‘Variable’ may contain XML elements
‘Label’ corresponding to variable labels which may include
plain text such as ‘Age’. ‘Variable’ is an instance of the
XSD EII ‘element’ whose ‘name’ attribute has the value
‘Variable’ and whose ‘type’ attribute has the value
‘VariableType’ referring to the complex type definition
‘VariableType’.

This complex type comprises the EII ‘complexContent’
including the XSD component ‘extension’ which contains a
sequence. This sequence comprises a reference to the global
element with the name ‘Label’ which is the type of the
XML element ‘Label’. The global XML element ‘Label’
may include XSD strings.

7.2 Map XSDs’ EIIs to generated ontologies’ classes

To be able to use this rich syntactic information for the
ontology, instead of just using the instance data, we first
transform the schema automatically with generic XSLT
transformations to a generated ontology (see Figure 3).

The first step is to convert each XSD’s EII into a class.
Therefore, the XSLT assigns class identifiers considering the
naming conventions (see Bosch and Mathiak, 2011) which ensure
the global uniqueness of the URIs. In contrast to OWL, XSD
has very few restrictions on unique naming. URIs of generated
ontologies have to be quite long to be globally unique. The global
element ‘Variable’ (<xs:element name= "Variable"…/>), for
example, is translated into the class ‘Variable-Element…’ with
the meta-EII ‘element’ as part of its identifier.

7.3 Sub-class relationships

Now, the XSD’s EIIs are transformed into the generated
ontology’s classes with globally unique URIs. But so far,
the transformation does not cover the XSDs’ semantics.
These semantics can be added by defining sub-class
relationships (see Figure 4).

The classes are defined as sub-classes of the super-

classes specified in the XSDMO: <EII> ⊑ <meta-EII>.
Classes standing for specific XSD elements like ‘Variable-
Element…’ are translated into sub-classes of the super-class
‘Element’ representing the meta-EII ‘element’ (<Variable-

Element…> ⊑ <Element>), as each particular EII ‘element’
is also part of the ‘Element’ class extension. In more simple
terms, each specific element is an element.

Figure 2 XML and XSD

262 T. Bosch and B. Mathiak

Figure 3 Map XSDs’ EIIs to generated ontologies’ classes (see online version for colours)

Figure 4 Sub-class relationships (see online version for colours)

 How to accelerate the process of designing domain ontologies based on XML schemas 263

7.4 HasValue restrictions on datatype properties

So far, the XSD’s EIIs are converted into sub-classes of the
XSDMO’s super-classes representing XSD meta-EIIs. As
next step EIIs’ attributes’ values are converted into datatype
properties ‘<attribute>_<domain meta-EII>_String’ and into
hasValue restrictions on XSDMO’s datatype properties:

<domain EII> ⊑  <attribute>_<domain meta-EII>_String.
{<String>} (see Figure 5).

Figure 5 HasValue restrictions on datatype properties
(see online version for colours)

The value ‘Variable’ of the ‘element’ EII’s attribute ‘name’
(<xs:element name="Variable"…/>) is translated into the
datatype property ‘name_Element_String’, pointing from an
element to a string, and into the XSDMO’s datatype

property’s hasValue restriction Variable-Element… ⊑ 
name_Element_String.{‘Variable’}, since ‘Variable-
Element…’ resources must have at least one relationship
along the datatype property ‘name_Element_String’ to the
string ‘Variable’. In other words, variable elements must
have the name ‘Variable’.

7.5 Universal restrictions on object properties

XSD’s EIIs and XSD’s EIIs’ attributes’ values are now
translated. The last step is to map EIIs’ part-of relationships,
XML elements and attributes’ content, and EIIs’ attributes’
values referring to either type definitions or other EIIs (see
Figure 6).

Values of EIIs’ attributes referring to other EIIs, are
transformed into XSDMO’s object properties’ universal

restrictions <domain EII> ⊑  <ref|substitutionGroup|refer>_
<domain meta-EII>_<range meta-EII>.<range EII>.

Figure 6 Universal restrictions on object properties (see online
version for colours)

The value ‘Label’ of the ‘element’ EII’s attribute ‘ref’
(<xs:element ref="Label"/>) referring to the EII ‘element’
with the name ‘Label’ is translated into the object property
‘ref_Element_Element’ and its universal restriction Label-

Element-Reference1… ⊑  ref_Element_Element.Label-
Element…. Values of EIIs’ attributes referring to type
definitions are translated into universal restrictions on

XSDMO’s object properties: <domain EII> ⊑ 
type|base_<domain meta-EII>_Type.<range EII>. The value
‘VariableType’ of the attribute ‘type’ of the EII ‘element’
with the name ‘Variable’ (<xs:element name="Variable"
type = "VariableType"/>) is converted into the object

property’s universal restriction Variable-Element… ⊑ 
type_Element_Type . VariableType-Type…. The part-of
relationship of the EII ‘sequence’ is translated into the

object property’s universal restriction Sequence1… ⊑ 
contains_Sequence_Element. Label-Element-Reference1….
The sequence includes only a reference to the global
element ‘Label’. The strict order of the EIIs contained in the
sequence is expressed by the object property’s universal

restriction Sequence1… ⊑  sequence.Label-Element-

264 T. Bosch and B. Mathiak

Reference1…. As resources of the class ‘Label-Element…’
may have text as content, i.e. ‘String-Type…’ individuals,
the datatype property ‘value_Element_String’ is introduced
and the datatype property’s universal restriction Label-

Element… ⊑  value_Element_String.String is defined.
While this means that instead of three simple nodes, we
suddenly have a plethora of classes with long names, it also
means that we adequately model the complete semantic
relationships. We can fully appreciate how components
relate to other ones on all three levels of instance, schema
and metamodel. Since this is all automatically generated,
this multiplication of information is not detrimental, but
instead allows us to use all this data in a way that is fully
integrated with each other. At no cost of time for the
ontology engineer. Now, all the information located in the
underlying XSDs of a specific domain is also expressed in
generated ontologies.

7.6 Derive domain ontology

Structures of XSDs and generated ontologies are rather
complex, generated ontologies do not correspond to the
highest quality requirements of domain ontologies, and
XSD and OWL have different modelling goals. Because of
these reasons, our idea is not to use the generated ontologies
directly. Instead, new classes, datatype and object properties
are added based on the generated ontology. This happens
automatically using SWRL rules. Figure 7 visualises the
generated ontology, its RDF representation, the domain
ontology’s extraction to be derived, and the SWRL rule’s
atoms.

We want to deduce an excerpt of DDI-RDF. More
specifically, we want to derive that the resource with the
URI ‘age’, assigned to the class ‘Variable-Element…’, is
also a variable and that the same resource has the variable
label ‘Age’ of the datatype ‘string’. The datatype property
‘skos:prefLabel’ represents relationships between variables
and variable labels.

The following program fragment demonstrates the
antecedent and the consequent of the SWRL rule which is
executed to derive the two statements explained before.

(?domain type_Element_Type ?a) 
(?a
 contains_ComplexType_ComplexContent

 ?b) 
(?b
 contains_ComplexContent_Extension

 ?c) 
(?c contains_Extension_Sequence ?d) 
(?d contains_Sequence_Element ?e) 
(?e ref_Element_Element ?f) 
(?f rdf:type Label-Element…) 
(?f value_Element_String ?range) ->

(?domain rdf:type Variable) 
(?domain skos:prefLabel ?range)

Figure 7 Derive domain ontology (see online version for colours)

The two statements can be derived since the individual
‘age’, substituting the SWRL variable ‘?domain’, has a
relationship along the object property ‘type_Element_Type’
to an individual replacing the variable ‘a’. This resource
is linked to an instance ‘?b’ via the ‘contains_Complex
Type_ComplexContent’ object property. Further, there’s a
navigation path from the ‘?b’ individual to the ‘?f’ instance
through the stated object properties. As XML elements
‘Label’, which are instances of the EII ‘element’ with the
name ‘Label’ (<xs:element name="Label"/>), may contain
text nodes such as ‘Age’, the ‘?f’ instance is assigned to the
class ‘Label-Element…’, representing the EII ‘element’
with the value ‘Label’ of the attribute ‘name’. This class
assignment ensures that derived variable labels are only
those strings contained in the element ‘Label’ and not in
other elements. According to the SWRL rule, the ‘?f’
resource must have a relationship along the datatype
property ‘value_Element_String’ to a ‘?range’ individual
substituted by the string ‘Age’. The concrete instances ‘age’
and ‘Age’ correspond to the antecedent of the SWRL rule,
i.e. there is a navigation path from the resource ‘age’ to the
string ‘Age’ through the stated object and datatype
properties. Therefore, it can be inferred that the resource
‘age’ is a variable with the variable label ‘Age’.

The advantage of this rule is that it works purely on the
schema level and can thus be reused for any instance or

 How to accelerate the process of designing domain ontologies based on XML schemas 265

document data we may encounter. By means of SWRL
rules, generated ontologies’ instances can be mapped to
individuals of widely used and accepted ontologies like
Dublin Core or SKOS. Another benefit is that all XML data
conforming to XSDs can be imported automatically as
domain ontologies’ instances. In summary, the process of
designing domain ontologies can now be supplemented with
all of the XSDs’ information about the domains of interest,
which allows us to automate part of the modeling and also
to keep it closer to the original intention of the XSD.

8 Evaluation

Generic test cases, derived from the components of the XSD
abstract data model, verify that any XSD can be translated
into an OWL generated ontology and that XML documents
corresponding to XSDs can be converted into RDF
representations of generated ontologies. Bosch and Mathiak
(2013) evaluated the proposed approach extensively and
published the evaluation results on a GitHub repository.6

The first step of our method is to transform XSDs into
generated ontologies completely automatically using XSLT
transformations. We converted multiple, widely known and
accepted XSDs from the academic and from the industrial
field. Our XSLT stylesheet translated 10,000 XSD
constructs contained in 20 DDI-XSDs in only 30 seconds.
The XSD of Simple Dublin Core with its 40 constructs was
transformed in 1 second and the 5 XSDs of Qualified
Dublin Core containing 250 XSD constructs in 7 seconds.
All calculations can be made in under a minute. The effort
in computing time is negligible in comparison with the time
needed for the second step of the semi-automatic approach.

The second step of our approach is to define SWRL
rules in order to derive domain ontologies automatically on
the instance and on the schema level. We specified SWRL
rules for 3 different domain ontologies. For Simple Dublin
Core,7 all SWRL rules were defined. For Qualified Dublin
Core8 and the DDI-RDF Discovery Vocabulary9 (an
ontology of DDI), a couple of representative SWRL rules
for each of the SWRL rule types were written. For DDI-
RDF, we estimated 15 person-hours to define 200 SWRL
rules. As these SWRL rules are written by hand, a graphical
user interface could assist users by creating SWRL rules
semi-automatically which would lead to time improvements.

To verify the hypothesis that the time and the effort
needed to deliver domain ontologies with high quality by
use of the proposed approach is much less than creating
domain ontologies completely manually, we determined the
effort and the expenses for both approaches. DDI-RDF
serves as use case, since we were part of the process of
creating this ontology manually.

For the evaluation of the semi-automatic approach, the
time actually needed for the formalisation of the domain
ontology and the time needed to develop the conceptual
ideas have to be distinguished. As we can see from our
experience with DDI-RDF, the effort required for the

development of the conceptual ideas would be 50% of the
working time spent for the traditional approach. 95 person-
days or 17,500 euros would have to be invested to evolve
the ontology’s conceptual model. We would have to invest 2
person-days or 350 euros for the formalisation of DDI-RDF,
i.e. the definition of the OWL axioms and the SWRL rules.
In total, we would have to spend 18,000 euros designing
DDI-RDF based on the already available XSDs.
Additionally, travelling, lodging, and board expenses have
to be invested as domain experts have to come together
discussing conceptual ideas. We calculate 20,000 euros for
these expenses, which is the half of the travelling, lodging,
and board expenses spent for the traditional approach. In
total, 38,000 euros would be needed to design DDI-RDF
using the semi-automatic approach. The total expenses
creating DDI-RDF manually are 75,000 euros including the
working times as well as travelling, lodging, and board
expenses. For the semi-automatic approach only half of this
amount is needed - namely 38,000 euros.

9 Conclusions, results and future work

This approach aims to speed up the task developing domain
ontologies from the ground up. XSDs, characterising
domain data models and already evolved by domain experts,
serve as a basis since contained information is reused.
Although RDF representations of generated ontologies,
automatically created out of the XSDs within seconds, can
be published in the LOD cloud and combined with other
RDF datasets, our idea is to derive domain ontologies
automatically out of the generated ontologies using SWRL
rules. Additionally, resulting domain ontologies can be
supplemented with semantic information not specified in the
underlying XSDs.

The overall concept of the approach has been finalised and
the mapping of the XSD abstract data model components
to class axioms of the XSDMO has been defined and
implemented. The mapping between XSDs and OWL
generated ontologies has been specified and programmatically
realised as well. Also the generality of the approach has been
verified, since the generic test cases have shown that all meta-
EIIs of the XSD meta-model are covered and thus, each XSD
can be transformed into an OWL generated ontology using
the same transformation rules.

Currently, we are writing a Java program translating
XML document instances into an RDF representation of the
generated ontologies. Moreover, we will create additional
Java code converting XML documents without corresponding
XSDs. So far, the most relevant subsets of the DDI domain
ontology are derived and appropriate SWRL rules are
defined. As part of the approach’s limitations we will define
use cases for which an automatic approach is suitable (e.g.
when XSDs do not represent the domain knowledge
sufficiently or when knowledge extraction is critical) and
those for which it is not a good solution (e.g. when XSDs do
not represent the domain knowledge correctly). We will

266 T. Bosch and B. Mathiak

extend our comprehensive evaluation by converting more
XSDs from different heterogeneous domains into generated
ontologies and by applying the semi-automatic approach to
more domain ontologies from different and heterogeneous
communities.

References

Anicic, N., Ivezic, N. and Marjanovic, Z. (2007) ‘Mapping XML
schema to OWL’, Enterprise Interoperability V, pp.243–252.

Battle, S. (2006) ‘Gloze: XML to RDF and back again’, 1st Jena
User Conference, Bristol, UK.

Bohring, H. and Auer, S. (2005) ‘Mapping XML to OWL
ontologies’, Leipziger Informatik Tage 72, Leipzig, Germany,
pp.147–156.

Bosch, T., Cyganiak, R., Wackerow, J. and Zapilko, B. (2012)
‘Leveraging the DDI model for linked statistical data in the
social, behavioural, and economic sciences’, Paper Presented
at the DC-2012 International Conference on Dublin Core and
Metadata Applications, 3–7 September 2012, Kuching,
Sarawak, Malaysia.

Bosch, T. and Mathiak, B. (2013) Evaluation of a Generic
Approach for Designing Domain Ontologies Based on XML
Schemas, Technical report, GESIS – Leibniz Institute for the
Social Sciences, Mannheim. Available online at:
http://www.gesis.org/publikationen/gesis-technical-reports/
(accessed on 8 April 2013).

Bosch, T. and Mathiak, B. (2012) ‘XSLT transformation
generating OWL ontologies automatically based on XML
schemas’, IEEE Xplore Digital Library, 6th International
Conference for Internet Technology and Secured
Transactions, IEEE Xplore Digital Library, pp.660–667.

Bosch, T. and Mathiak, B. (2011) ‘Generic multilevel approach
designing domain ontologies based on XML schemas’,
Proceedings of the Workshop Ontologies Come of Age in the
Semantic Web, 10th International Semantic Web Conference,
CEUR Workshop Proceedings, Aachen, Germany, pp.1–12.

Bosch, T., Wira-Alam, A. and Mathiak, B. (2011) ‘Designing an
ontology for the data documentation initiative’, 8th Extended
Semantic Web Conference.

Clark, J., Cowan, J., Fitzgerald, M., Kawaguchi, J., Lubell, J.,
Murata, M., Walsh, N. and Webber, D. (2003) ‘Information
technology – Document Schema Definition Language
(DSDL) – part 2: regular-grammar-based validation’, RELAX
NG. ISO/IEC 19757-2:2003(E).

Dell’Erba, M., Fodor, O., Ricci, F. and Werthner, H. (2002)
‘Harmonise: a solution for data interoperability’, Proceedings
of the 2nd IFIP Conference on E-Commerce, E-Business, E-
Government, Lisbon, Portugal, pp.433–445.

Ferdinand, M., Zirpins, C. and Trastour, D. (2004) ‘Lifting XML
schema to OWL’, Web Engineering – 4th International
Conference, Springer, Heidelberg, Germany, pp.354–358.

Karlund, N., Moller, A. and Schwartzbach, M.I. (2000) ‘DSD: a
schema language for XML’, ACM SIGSOFT Workshop on
Formal Methods in Software Practice, ACM, New York, NY.

Klein, M.C.A. (2002) ‘Interpreting XML documents via an RDF
schema ontology’, 13th International Workshop on Database
and Expert Systems Applications, Springer, Heidelberg,
Germany.

Kobeissy, N., Genet, M.G. and Zeghlache, D. (2007) ‘Mapping
XML to OWL for seamless information retrieval in context-
aware environments’, International Conference on Pervasive
Services, Istanbul, Turkey.

Kupfer, A., Eckstein, S., Störmann, B., Neumann, K. and Mathiak,
B. (2007) ‘Methods for a synchronized evolution of databases
and associated ontologies’, Paper Presented at the 2007
Conference on Databases and Information Systems IV,
Amsterdam, The Netherlands.

Murata, M., Lee, D., Mani, M. and Kawaguchi, K. (2005)
‘Taxonomy of XML schema languages using formal language
theory’, ACM Transactions on Internet Technology, Vol. 5,
No. 4.

O’Connor, M.J. and Das, A.K. (2011) ‘Acquiring OWL ontologies
from XML documents’, Proceedings of the 6th International
Conference on Knowledge Capture, ACM, New York, NY.

O’Connor, M.J. and Das, A.K. (2010) ‘Semantic reasoning with
XML-based biomedical information models’, 13th World
Congress on Medical Informatics, Cape Town, South Africa.

Reif, G., Gall, H. and Jazayeri, M. (2005) ‘WEESA – web
engineering for Semantic Web applications’, 14th World
Wide Web Conference, ACM, New York, NY.

Tous, R., Garcia, R., Rodriguez, E. and Delgado, J. (2005)
‘Architecture of a semantic XPath processor. application to
digital rights management’, E-Commerce and Web
Technologies: 6th International Conference, EC-Web,
Springer, Heidelberg, Germany, pp.1–10.

Volz, R., Oberle, D., Staab, S. and Studer, R. (2003) OntoLiFT
Prototype – WonderWeb: ontology infrastructure for the
Semantic Web, Technical report, WonderWeb Deliverable
D11.

Notes

1 http://lod-cloud.net/

2 http://www.w3.org/XML/Datamodel.html

3 http://www.w3.org/TR/2009/NOTE-owl2-manchester-syntax-
20091027/

4 http://clarkparsia.com/pellet/

5 http://www.ddialliance.org/

6 https://github.com/boschthomas/PhD

7 http://dublincore.org/documents/dces/

8 http://dublincore.org/documents/dcmi-terms/

9 http://rdf-vocabulary.ddialliance.org/discovery

