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Abstract: Domain ontologies and XML Schemas serve to describe domain data models although 
they follow different modelling goals. By lifting the syntactic level of XML documents and 
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unexceptionally any XML Schema can be converted into a generated ontology. As structures of 
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1 Introduction 

XML documents are commonly used to store and transfer 
information in distributed environments. XML documents 
may be instances of XML Schemas (XSDs) determining 
their terminology and syntactic structure. XML represents a 
large set of information within the context of various 
domains and has reached wide acceptance as standard data 
exchange format. This has driven the development of the 
proposed approach. Both data and metadata, structured by 
ontologies, can be published in the increasingly popular and 
widely adopted LOD cloud to get linked with a huge 
number of other RDF datasets of different topical domains.1 

As RDF is an established standard, there is a plethora of 
tools which can be used to interoperate with data and 
metadata represented in RDF.  

XSD and OWL follow different modelling goals. On the 
one hand, the XML data model describes the terminology 
and the syntactic structure of XML documents, a node 
labelled tree.2 OWL, on the other hand, is based on formal 
logic and on the subject-predicate-object triples from  
RDF. OWL specifies semantic information about specific 
domains, describes relations between domain classes and 
thus, allows the sharing of conceptualisations. More 
effective and efficient cooperation between individuals and 
organisations are possible if they agree on a common syntax 
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(specified by XSDs) and have a common understanding of 
the domain classes (defined by OWL ontologies). XML is 
intended to structure and exchange documents (document-
oriented), but is used to structure and exchange data  
(data-oriented), a purpose for which it has not been 
developed. Also, XSD languages concentrate on structuring 
documents instead of structuring data. As OWL is used  
for describing domain data models semantically, the 
information needed to depict parts of these data models can 
be extracted from underlying XSDs and reused as a basis to 
extend the knowledge representation of particular domains 
using OWL. We attempt to bridge the gap between XSD 
and OWL by lifting the syntactic level of XML documents 
to the semantic level of OWL ontologies. 

Traditionally, ontology engineers work in close collaboration 
with domain experts to design domain ontologies in a manual 
manner which requires a lot of time and effort. Domain 
ontologies and XSDs describe domain data models. In many 
cases, XSDs are already defined and can therefore be reused 
in the process of designing domain ontologies from scratch. 
Saved time and manpower could be used more effectively to 
enrich domain data models with additional domain-specific 
semantic information, not or not satisfyingly covered by the 
underlying XSDs. The main research question, how the time-
consuming process designing domain ontologies based on 
already available XSDs could be accelerated, results from the 
stated problem. An extensive evaluation of the proposed 
approach verifies the appropriate hypothesis that the effort 
and the time needed to deliver high quality domain ontologies 
using the developed approach is much less than creating 
domain ontologies in a completely manual way.  

2 Related work 

Several strategies lifting the syntactic level of XML documents 
to the semantic level of OWL ontologies can be distinguished. 
The authors clustered appropriate tools implementing these 
transformations into three classes depending on the kind of 
conversion either on the instance, the conceptual, or both, the 
instance and the conceptual level.  

On the instance level, Klein (2002) developed the so-called 
RDF Schema mapping ontology enabling a one-way mapping 
of XML documents to RDF. Relevant content of XML 
documents can be identified. As extension to this approach, 
Battle (2006) has introduced a bidirectional mapping of XML 
components to RDF. The WEESA system implements an 
automatic transformation from XML to RDF using an OWL 
ontology, manually created from corresponding XSDs and 
manually defined rules. XML document instances are not 
mapped to OWL equivalents (Reif et al., 2005). O’Connor  
and Das (2010) developed an approach transforming XML 
documents to individuals of an OWL ontology describing the 
serialisation of the XML document. SWRL is used to map 
these instances to individuals of a domain ontology.  

On the conceptual level, there is a distinction between 
approaches converting XSD languages into RDFS or OWL. 
Several languages for writing schemas like DTD, XSD,  
 

DSD (Karlund et al., 2000) and Relax NG (Clark et al., 
2003) exist. The prototype OntoLiFT (Volz et al., 2003) 
offers a generic means for converting arbitrary XSD  
languages into RDFS ontologies semi-automatically. In a 
first step, XSD languages are transformed into regular tree 
grammars consisting of non-terminals, terminals, start 
symbols and production rules (Murata et al., 2005). In a 
second step, non-terminals and terminals are converted into 
RDFS classes and production rules are mapped to RDF 
properties. In comparison with the proposed approach, 
OntoLiFt converts any XSD language and not just the 
specific one XSD into ontologies. Anicic et al. (2007) 
evolved an approach based on metamodels transforming 
between the different models of XSD and OWL.  

On the instance and the conceptual level, there are 
methods transforming XML to RDF and XSD to either 
RDFS or OWL. Within the EU-funded project called 
‘Harmonise’ the interoperability of existing standards for 
the exchange of tourism data has been achieved by the 
transformation of  XML documents and XSDs into RDF 
and RDFS ontologies which have been mapped to each 
other (Dell’Erba et al., 2002). Using the approach of 
O’Connor and Das (2011), XML document instances are 
transformed into OWL ontologies even though associated 
XSDs do not exist. As a consequence, unstructured contents 
can be mapped to OWL ontologies as well. XSDs can also 
be mapped to OWL ontologies, as XSD documents are 
represented in XML, too. New OWL ontologies can be 
generated from scratch and existing ones can be extended. 
O’Connor and Das evolved XML Master, a language 
describing OWL ontologies declaratively. XML Master 
combines the Manchester OWL Syntax3 and XPath to refer 
to XML content. O’Connor and Das criticise the limited  
and unsatisfactory number of OWL constructs supported  
by current tools converting XSDs into OWL ontologies. 
Thus, all OWL constructs are covered. One shortcoming 
associated with this method is that the mapping language 
expressions have to be written manually and therefore, 
XML documents and XSDs cannot be transformed into 
OWL ontologies automatically. Another drawback is that 
ontology engineers have to be familiar with the Manchester 
OWL Syntax and XPath to express the mappings. Ferdinand 
et al. (2004) propose both mappings from XML to RDF  
and XSD to OWL which are independent of each other. 
This means, OWL individuals do not necessarily correspond 
to the OWL conceptual model, since declarations and 
definitions of XML documents may be transferred to 
differing OWL constructs. In addition, another system can 
be stated which transfers XSD components to OWL 
language constructs at the terminological level and XML 
document instances to OWL individuals at the assertional 
level. XPath expressions are applied selecting XML 
documents’ content (Kobeissy et al., 2007). Besides that, the 
approach of Tous et al. (2005) is very similar to the method 
of Kobeissy, Genet, and Zeghlache. Bohring and Auer 
(2005) devised a mapping between XML and RDF and 
between XSD and OWL. The authors assume that XML 
documents are structured like relational databases. Thus,  
relational structures of XML documents are discovered and  
 



256 T. Bosch and B. Mathiak  

represented in OWL. Relations correspond to classes, 
columns to properties, and rows to instances. XML data 
model elements are mapped automatically to components  
of the OWL data model. Named simple and complex types, 
for instance, are transferred to classes. Elements containing 
other elements or having at least one attribute, are converted 
into classes and object properties between these classes. 
Both elements, including neither attributes nor sub-
elements, and attributes, which are assumed to represent 
database columns, are transformed into datatype properties 
with the surrounding element as domain. Besides, XML 
cardinality constraints are transformed into equivalent OWL 
cardinality restrictions. 

3 Proposed approach 

Figure 1 visualises the concept of the devised generic multi-
level approach for designing domain ontologies based on 
already available XSDs (Bosch and Mathiak, 2011). 

XSDs determine the vocabulary, the terminology and 
the syntactic structure of XML documents which are 
instances of these XSDs. XSDs are instances of the XSD 
metamodel. The components of the XSD abstract data 
model, also called element information items (EIIs) in  
the XML representation, are mapped to classes, universal 
restrictions on datatype and object properties of a generic 
ontology called the XSD Metamodel Ontology (XSDMO). 
The intention of the devised approach is to convert XSDs 
automatically into classes of generated ontologies, hasValue  
 

restrictions on XSDMO’s datatype properties, and universal  
restrictions on XSDMO’s object properties using XSLT 
transformations. As each component of the XSD abstract 
data model is covered by this approach, unexceptionally any 
XSD can be translated into a generated ontology. On the 
instance level, XML documents are mapped to ABoxes of 
generated ontologies using a Java program as XSLT is less 
powerful for this purpose. After these two transformation 
processes, taking only seconds, all the information located 
in the underlying XSDs of a particular domain is now 
expressed in the generated ontologies and their RDF 
representations can be published in the LOD cloud and be 
linked to resources within different topical domains in the 
web of data. As generated ontologies do not conform to the 
highest quality requirements of domain ontologies, structures 
of generated ontologies are quite complex, and OWL and 
XSD follow different modelling goals, the generated 
ontologies are not directly as useful as manually created 
domain ontologies. Thus, the class axioms of generated 
ontologies are intended to be further supplemented with 
additional domain-specific semantic information, not defined 
in underlying XSDs, in form of domain ontologies. These 
domain ontologies can be deduced automatically out of the 
generated ontologies using SWLR rules on the schema and  
on the instance level. As a consequence, all XML data 
conforming to XSDs can be imported automatically as 
instances of domain ontologies. The effort and the time, 
however, needed to deliver high quality domain ontologies 
subsequently is much less than creating domain ontologies 
completely manually. 

Figure 1 Generic approach for designing domain ontologies based on XSDs 

 

 

 
 



 How to accelerate the process of designing domain ontologies based on XML schemas 257 
 

3.1 Novelty of approach 

In comparison to previous general-purpose tools for 
transforming XSDs into OWL ontologies, the novelty of the 
devised approach is that the translation of XSDs into 
generated ontologies is based on the XSD metamodel. The 
majority of the tools are designed for transformation of 
either XML into RDF on the assertional knowledge level or 
schemas into ontologies on the terminological knowledge 
level. The presented method follows a complete approach 
converting content of XML documents into OWL 
individuals and XSDs into OWL ontologies. Most tools try 
extracting semantics directly out of XSDs. The suggested 
approach, in contrast, only gains information about the 
terminology and the syntactic structure of XML document 
instances conforming to XSDs. Domain ontologies are 
supplemented with domain-specific semantic information in 
following steps. Many approaches convert XML to RDF 
and/or XSD languages into ontologies in a manual or at 
most in a semi-automatic way. This approach translates 
XSDs and XML into OWL ontologies and their RDF 
representations in a totally automatic way without any 
manual modifications of the generated ontologies after the 
translation process. In conjunction with associated domain 
ontologies, the resulting ontologies are as usable as 
ontologies that were completely constructed by hand, but 
with a fraction of necessary effort. In addition, divers 
existing methods generate RDFS ontologies and not the 
more expressive OWL ontologies. 

4 Mapping of the XSD metamodel to the  
XSDMO 

The XSD metamodel components are mapped to classes, 
universal restrictions on datatype and object properties of 
the generic XSDMO ontology. Table 1 sketches these 
mappings which are described in this section.  

Meta-EIIs 

Meta-EIIs have been mapped to classes of the XSDMO 
representing the meta-EIIs. The class ‘Element’, for instance, 
stands for the XSD meta-model’s meta-EII ‘element’.  

Attributes of meta-EIIs 

Attributes of meta-EIIs have been mapped to datatype 
properties ‘<attribute>_<domain meta-EII>_String’ with the 
class standing for the domain meta-EII as domain and the 
class representing the XSD built-in primitive datatype 
‘string’ as range. Attributes of meta-EIIs have also  
been mapped to universal restrictions on these datatype 

properties: <domain meta-EII> ⊑  <attribute>_<domain 
meta-EII>_String.String. The universal restrictions express 
that the class including all domain meta-EII individuals is 
defined as the sub-class of the anonymous complex super- 
 
 

class of all the instances, which can only have relationships  
along the datatype properties ‘<attribute>_<domain meta-
EII>_ String’ with individuals of the type ‘String’ or have 
no relationships along these datatype properties.  

Table 1 Mapping of XML schema metamodel to XML 
schema metamodel ontology (XSDMO) 

XML Schema Metamodel XSDMO 

meta-EIIs classes: <meta-EII> 

attributes of meta-EIIs 

datatype properties and universal 

restrictions: <domain meta-EII> ⊑  
<attribute>_<domain meta-
EII>_String.String 

any well-formed XML 
content of meta-EIIs 
Appinfo|Documentation 

datatype properties and universal 
restrictions: <Appinfo|Documentation > 

⊑  any_<Appinfo|Documentation> 
_String.String 

texts contained in XML 
document instances’ 
elements and attributes 

datatype properties and universal 

restrictions: <Element|Attribute> ⊑  
value_<Element|Attribute>_String. 
String 

attributes of meta-EIIs 
referring to meta-EIIs 
(attributes ‘ref’, 
‘substitutionGroup’,  
‘refer’) 

object properties and universal 

restrictions: <domain meta-EII> ⊑  
<ref|substitutionGroup|refer>_<domain 
meta-EII>_<range meta-EII>.<range 
meta-EII> 

attributes of meta- 
EIIs referring to type 
definitions (attributes  
‘type’ and ‘base’) 

object properties and universal 

restrictions: <domain meta-EII> ⊑  
<type|base>_<domain meta-
EII>_Type.Type 

attribute ‘memberTypes’ 

object property and universal 
restriction: 

 <union> ⊑  memberTypes_union_ 
Type.Type 

meta-EIIs’ part-of 
relationships 

object properties and universal 

restrictions: <domain meta-EII> ⊑  
contains_<domain meta-EII>_<range 
meta-EII>.<range meta-EII> 

sequence of in meta-EII 
‘sequence’ contained  
meta-EIIs 

object property and universal 

restrictions: <sequence> ⊑  
sequence.<range meta-EII> 

The attribute ‘name’ of the meta-EII ‘element’, for example, 
has been mapped to the datatype property ‘name_Element_ 
String’ and to the datatype property’s universal restriction 

Element ⊑  name_Element_String.String, as elements can 
only have ‘name_Element_String’ relationships to ‘String’ 
individuals.    

Any well-formed XML content of meta-EIIs Appinfo| 
Documentation 

The meta-EIIs Appinfo and Documentation may comprise 
any well-formed XML content such as XML elements, 
XML attributes, and plain text. For this reason, any  
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well-formed XML content of the meta-EIIs Appinfo and  
Documentation is mapped to the datatype properties 
‘any_<Appinfo| Documentation>_String’ and to the 
universal restrictions on these datatype properties: <Appinfo 

|Documentation > ⊑  any_<Appinfo| Documentation>_ 
String.String. 

Texts contained in XML document instances’ elements and 
attributes 

Elements and attributes of XML documents may comprise 
text. Thus, we have added the datatype properties 
‘value_<Element|Attribute>_String’ and the datatype 

properties’ universal restrictions <Element|Attribute> ⊑  
value_<Element| Attribute>_String.String to the XSDMO. 
On the instance level, the XML document excerpt <Label 
lang="en">Age</Label> is converted into the property 
assertions value_Element_String (Label-Individual…, ‘Age’) 

and value_Attribute_String (Lang-Individual…, ‘en’).  

Attributes of meta-EIIs referring to meta-EIIs (attributes 
‘ref’, ‘substitutionGroup’, ‘refer’) 

Meta-EIIs’ attributes like ‘ref’, ‘refer’, or 
‘substitutionGroup’ referring to other meta-EIIs have been 
mapped in the XSDMO to the object properties 
‘<ref|substitutionGroup|refer>_ <domain meta-EII>_<range 
meta-EII>’ and to the universal restrictions: <domain meta-

EII> ⊑  <ref|substitutionGroup|refer>_<domain meta-EII> 
_<range meta-EII>.<range meta-EII>. Elements, for instance, 
can only have ‘ref_Element_Element’ relationships to elements 
according to the object property’s universal restriction Element 

⊑  ref_Element_Element. Element. 

Attributes of meta-EIIs referring to type definitions 
(attributes ‘type’ and ‘base’) 

Meta-EIIs’ attributes ‘base’ and ‘type’ refer to simple ur-
type, simple type, or complex type definitions. As a 
consequence, these attributes would be mapped to six object 
properties ‘<type|base>_<domain meta-EII>_SimpleType| 
AnySimpleType|ComplexType’. XSLT trans-formations, 
creating generated ontologies automatically out of XSDs, 
would have to determine the object properties’ range classes 
‘AnySimpleType’, ‘SimpleType’, and ‘ComplexType’ as 
part of the object properties’ identifiers at runtime. If the 
attributes ‘type’ or ‘base’ either point to simple or complex 
type definitions, which are  defined in external XSDs, these 
XSDs would have to be physically available to traverse their 
XML trees and to iterate over each simple and complex type 
definition. But in many cases, external XSDs are not 
physically available. Therefore, we have mapped the 
attributes ‘type’ and ‘base’ to the object properties 
‘<type|base>_<domain meta-EII>_Type’ with the range 
class ‘Type’ representing the super-class of all three more  
 
 
 

specific type definitions: simple ur-type, simple type, and 
complex type definitions. The attributes ‘base’ and ‘type’ 
have also been mapped to the object properties’ universal 

restrictions <domain meta-EII> ⊑  <type|base>_<domain 
meta-EII>_Type.Type. Considering the object property’s 

universal restriction Element ⊑  type_Element_Type. 
Type, elements can only have ‘type_Element_Type’ 
relationships to ‘Type’ individuals (simple or complex type 
definitions in this case) or have no such relations.  

Attribute ‘memberTypes’ 

The attribute ‘memberTypes’ of the EII ‘union’ may include 
simple ur-type and simple type definitions separated by 
blank characters. This attribute has been mapped to the 
object property ‘memberTypes_union_Type’ and to the 

object property’s universal restriction <union> ⊑  
memberTypes_union_Type.Type. 

Meta-EIIs’ part-of relationships 

Meta-EIIs may contain other meta-EIIs. For this reason the 
object properties ‘contains_<domain meta-EII>_<range 
meta-EII>’ and associated universal restrictions <domain 

meta-EII> ⊑  contains_<domain meta-EII>_<range meta-
EII>.<range meta-EII> have been specified. In accordance 

with the object property’s universal restriction Sequence ⊑ 
 contains_Sequence_ Element.Element, sequences can 
only include elements along the object property 
‘contains_Sequence_Element’ and no instances of other 
classes. 

Sequence of in meta-EII ‘sequence’ contained meta-EIIs 

The universal restrictions on the object properties 
‘contains_Sequence_<range meta-EII>’ state for each range 
meta-EII (annotation, element, group, choice, and sequence) 
that range instances have to be of the classes representing 
these range meta-EIIs. The object property ‘sequence’ and 

the object property’s universal restriction <sequence> ⊑  
sequence.<range meta-EII> have been added to the 
XSDMO enabling to capture the strict order of in EIIs 
‘sequence’ contained EIIs by means of the mapping of 
XSDs to generated ontologies. 

5 Mapping of XSDs to generated ontologies 

XSDs are translated into classes, hasValue restrictions on 
XSDMO’s datatype properties, and universal restrictions  
on XSDMO’s object properties. Table 2 demonstrates the  
in this chapter delineated mappings of XSDs to OWL 
generated ontologies. Bosch and Mathiak (2012) explain  
the implementation of these mappings using XSLT 
transformations in detail. 
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Table 2 Mapping of XML schemas to generated ontologies 

XML Schemas Generated Ontologies 

EIIs 
sub-classes of XSDMO’s classes:  

<EII> ⊑ <meta-EII> 

values of EIIs’ 
attributes 

hasValue restrictions on XSDMO’s 

datatype properties: <domain EII> ⊑  
 <attribute>_<domain meta-EII>_String. 
{<String>} 

any well-formed XML 
content of EIIs 
Appinfo| 
Documentation 

hasValue restrictions on XSDMO’s 
datatype properties: 

<Appinfo|Documentation > ⊑ 
 any_<Appinfo|Documentation>_String. 
{<String>} 

values of EIIs’ 
attributes referring to 
EIIs (attributes ‘ref’, 
‘substitutionGroup’, 
‘refer’) 

universal restrictions on XSDMO’s object 

properties: <domain EII> ⊑  
 <ref|substitutionGroup|refer>_<domain 
meta-EII>_<range meta-EII>.<range EII> 

values of EIIs’ 
attributes referring to 
type definitions 
(attributes ‘type’ and 
‘base’) 

universal restrictions on XSDMO’s object 
properties:  

<domain EII> ⊑  
 <type|base>_<domain meta-
EII>_Type.<range EII> 

values of attribute 
‘memberTypes’ 

univeral restriction on XSDMO’s object 

property: <union> ⊑ 
 memberTypes_Union_Type.<union of 
Type EIIs> 

EIIs’ part-of 
relationships 

universal restrictions on XSDMO’s object 

properties: <domain EII> ⊑  
 contains_<domain meta-EII>_<range 
meta-EII>.<union of range EIIs> 

sequence of in EII 
‘sequence’ contained 
EIIs 

universal restrictions on XSDMO’s object 

property: <sequence> ⊑  
sequence.<union of EIIs> 

EIIs 

EIIs are transformed into sub-classes of the XSDMO’s 

super-classes: <EII> ⊑ <meta-EII>. To show an example, 
the XSD’s EII ‘element’ with the name ‘Label’ 
(<xs:element name="Label"/>) is converted into the class 
‘Label-Element…’. This class is then defined as sub-class 

of the super-class ‘Element’ (Label-Element… ⊑ Element), 
as all ‘Label’ individuals are also part of the ‘Element’ class 
extension. 

Values of EIIs’ attributes 

Values of EIIs’ attributes are translated into hasValue 
restrictions on XSDMO’s datatype properties <domain EII> 

⊑  <attribute>_ <domain meta-EII>_String.{<String>}, as 
classes representing domain EIIs are defined as sub-classes 
of the anonymous complex super-classes of all the 
individuals which have at least one relationship along  
the datatype properties ‘<attribute>_<domain meta-
EII>_String’ to the specified individuals of the XSD’s 
primitive datatype ‘string’. The value of the attribute ‘name’  
 

of the EII ‘element’ (<xs:element name="Label"/>) is 
transformed into the datatype property hasValue restriction 

Label-Element… ⊑  name_Element_String.{‘Label’}, as 
‘Label’ elements must have at least one name which is 
‘Label’ and of the type ‘string’. 

Any well-formed XML content of EIIs Appinfo| 
Documentation 

Any well-formed XML content of the EIIs Appinfo and 
Documentation such as XML elements, XML attributes, and 
plain text is converted into hasValue restrictions on 
XSDMO’s datatype properties <Appinfo| Documentation> 

⊑  any_<Appinfo| Documentation>_String.{<String>}. 
The text contained in the EII ‘appinfo’ (<xs:appinfo>This is 
an application information.</xs:appinfo>) is converted into 

the datatype property hasValue restriction Appinfo1… ⊑  
any_Appinfo_String.{‘This is an application information.’}.  

Values of EIIs’ attributes referring to EIIs (attributes ‘ref’, 
‘substitutionGroup’, ‘refer’) 

Values of EIIs’ attributes ‘ref’, ‘substitutionGroup’, and 
‘refer’ referring to other EIIs, are translated into XSDMO’s 

object properties’ universal restrictions <domain EII> ⊑  
<ref|substitutionGroup|refer>_<domain meta-EII>_<range 
meta-EII>.<range EII>. The reference to the global element 
‘Label’ (<xs:element ref="Label"/>), for instance, is 
converted into the object property’s universal restriction 

Label-Element-Reference1… ⊑  ref_Element_Element. 
Label-Element…. 

Values of EIIs’ attributes referring to type definitions 
(attributes ‘type’ and ‘base’) 

Values of EIIs’ attributes ‘type’ and ‘base’ referring to 
simple ur-type, simple type, or complex type definitions are 
converted into universal restrictions on XSDMO’s object 

properties: <domain EII> ⊑  <type|base>_<domain meta-
EII>_Type.<range EII>. The value ‘VariableType’ of the 
attribute ‘type’ of the EII ‘element’ with the name 
‘Variable’ (<xs:element name="Variable" type="Variable 
Type"/>), for example, is transformed into the object 

property’s universal restriction Variable-Element… ⊑  
type_Element_Type.VariableType-Type…. 

Values of attribute ‘memberTypes’ 

The attribute ‘memberTypes’ of the EII ‘union’ may contain 
multiple simple ur-type and simple type definitions 
separated by blank characters. Consequently, the value of 
this attribute is converted into the XSDMO’s object 

property’s universal restriction <union> ⊑  member 
Types_Union_Type.<union of Type EIIs>. The attribute 
‘memberTypes’, for instance, contains references to one 
simple ur-type and two simple type definitions (<xs:union 
memberTypes = "SimpleType1 SimpleType2 xs:string"/>). 
The value of the attribute ‘memberTypes’ is translated  
into the object property’s universal restriction Union1…  
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⊑  memberTypes_Union_Type. (SimpleType1-Type… ⊔ 

SimpleType2-Type… ⊔ string-Type…).  

EIIs’ part-of relationships 

Because EIIs may include one to multiple EIIs, universal 

restrictions on XSDMO’s object properties <domain EII> ⊑ 
 contains_<domain meta-EII>_<range meta-EII>.<union 
of range EIIs> are used to map EIIs’ part-of relationships. 
To state an example, the following sequence contains only 
one ‘element’ EII, a reference to the global element ‘Label’: 
<xs:sequence> <xs:element ref=”Label”/> </xs:sequence>. 
According to the object property’s universal restriction 

Sequence1… ⊑  contains_ Sequence_Element.Label-
Element-Reference1…, the range of the object property can 
only comprise instances of one class representing the 
reference to the global element ‘Label’. If EIIs have more 
than one EII as content, the domain EIIs can only  
have relationships along particular object properties to 
individuals of the anonymous complex super-class 
consisting of the union of multiple classes representing the 
contained range EIIs. The part-of relationship of the 
sequence (<xs:sequence> <xs:element ref = ”Variable 
Name”/> <xs:element ref=”Label”/> </xs:sequence>) is 
transferred into the object property’s universal restriction 

Sequence1… ⊑  contains_Sequence_Element.(Variable 

Name-Element-Reference1… ⊔ Label-Element-Reference 
2…). 

Sequence of in EII ‘sequence’ contained EIIs 

According to the universal restrictions on the object 
properties ‘contains_Sequence_Element| Sequence’, 
sequence individuals can only have relationships along 
these object properties to element|sequence instances. 
Sequences may not only include either element or sequences 
but also annotations, groups, and choices simultaneously. 
Furthermore, sequences are not only containers of multiple 
classes’ individuals. They also store the strict order of 
contained EIIs. As instances of different classes may be 
contained and to store the strict order of included EIIs, we 
added the object property ‘sequence’ and the universal 

restrictions <sequence> ⊑  sequence.<union of EIIs> to 
the XSDMO. In our example, sequence individuals either 

contain VariableName or Label individuals: Sequence1… ⊑ 

 sequence. (VariableName-Element-Reference1… ⊔ 
Label-Element-Reference2…). The sequence is extracted 
implicitly in compliance with the order of the union 
operands. 

6 Derivation of domain ontologies and linking to 
external ontologies 

So far, XSDs, describing specific domain data models and 
determining the syntactic structure of appropriate XML 
documents, are converted automatically into OWL 
generated ontologies using XSLT transformations, and 

XML document instances are translated into an RDF 
representation of the generated ontologies. Subsequently, 
domain ontologies are inferred both on the schema and the 
instance level out of these generated ontologies in an 
automatic manner using SWRL rules which are executed by 
rule engines like Pellet, the OWL 2 reasoner for Java.4 The 
antecedents of SWRL rules are specified according to the 
syntactic structures of XML document instances, storing 
particular domains’ data and meta-data. The consequents of 
SWRL rules, however, are defined corresponding to the 
domain ontologies’ conceptual models. Thus, to define 
SWRL rules, ontology engineers have to devise the domain 
ontologies’ conceptual models with the help of domain 
experts in a first stage. Generated ontologies and therefore 
XSDs’ structures can be very complex and thus are not 
intended for information retrieval tasks specified and 
executed by users. When domain ontologies are derived, 
users can perform queries on domain ontologies using 
intuitive semantics of the particular domain without 
knowledge of complex XSDs’ structures. Although SWRL 
rules work completely on the schema level, both 
terminological and assertional knowledge can be deduced. 
Domain ontologies’ classes can be annotated as equivalent 
to classes of existing accepted and widely adopted external 
ontologies such as SKOS or Dublin Core. The resulting 
benefit is that reasoners may use additional semantic 
information defined in external ontologies for their 
deductions (Kupfer et al., 2007).  

7 Use case 

To get a better idea of how XSDs and XML documents are 
translated into generated ontologies’ TBoxes and ABoxes 
and of how domain ontologies are derived out of these 
generated ontologies on the schema and on the instance 
level, we show a complete use case covering the most 
important mappings and motivating the approach’s 
application. Bosch et al. (2011) have discussed use cases 
associated with a DDI ontology and Bosch et al. (2012) 
delineate its conceptual model. The Data Documentation 
Initiative (DDI)5 is an acknowledged international standard 
for the documentation and management of data from the 
social, behavioural, and economic sciences. In this use case, 
excerpts of the DDI ontology are deduced out of the 
underlying XSDs describing this particular domain. More 
specifically, it will be derived that a certain resource is a 
social science variable with a particular variable label, if 
specific conditions are fulfilled.  

Domain ontologies are derived out of generated 
ontologies resulting from XSDs within seconds by means of 
XSLT. Because of the complexity of XSDs’ structures and 
as XSDs may not contain all the information domain experts 
want to express in a domain ontology, the generated 
ontologies’ complexity is then reduced and the generated 
ontologies are extended in form of domain ontologies  
by additional domain-specific semantic information not 
directly covered by the XSDs.  



 How to accelerate the process of designing domain ontologies based on XML schemas 261 

7.1 XML and XSD 

Figure 2 visualises the XML document (on the right), storing 
information about variables, and the XSD, determining the 
XML’s syntactic structure. 

XML elements ‘Variable’ may contain XML elements 
‘Label’ corresponding to variable labels which may include 
plain text such as ‘Age’. ‘Variable’ is an instance of the 
XSD EII ‘element’ whose ‘name’ attribute has the value 
‘Variable’ and whose ‘type’ attribute has the value 
‘VariableType’ referring to the complex type definition 
‘VariableType’. 

This complex type comprises the EII ‘complexContent’ 
including the XSD component ‘extension’ which contains a 
sequence. This sequence comprises a reference to the global 
element with the name ‘Label’ which is the type of the 
XML element ‘Label’. The global XML element ‘Label’ 
may include XSD strings.  

7.2 Map XSDs’ EIIs to generated ontologies’ classes 

To be able to use this rich syntactic information for the 
ontology, instead of just using the instance data, we first 
transform the schema automatically with generic XSLT 
transformations to a generated ontology (see Figure 3).  
 

The first step is to convert each XSD’s EII into a class. 
Therefore, the XSLT assigns class identifiers considering the 
naming conventions (see Bosch and Mathiak, 2011) which ensure 
the global uniqueness of the URIs. In contrast to OWL, XSD 
has very few restrictions on unique naming. URIs of generated 
ontologies have to be quite long to be globally unique. The global 
element ‘Variable’ (<xs:element name= "Variable"…/>), for 
example, is translated into the class ‘Variable-Element…’ with 
the meta-EII ‘element’ as part of its identifier.  

7.3 Sub-class relationships 

Now, the XSD’s EIIs are transformed into the generated 
ontology’s classes with globally unique URIs. But so far, 
the transformation does not cover the XSDs’ semantics. 
These semantics can be added by defining sub-class 
relationships (see Figure 4).  

The classes are defined as sub-classes of the super-

classes specified in the XSDMO: <EII> ⊑ <meta-EII>. 
Classes standing for specific XSD elements like ‘Variable-
Element…’ are translated into sub-classes of the super-class 
‘Element’ representing the meta-EII ‘element’ (<Variable-

Element…> ⊑ <Element>), as each particular EII ‘element’ 
is also part of the ‘Element’ class extension. In more simple 
terms, each specific element is an element. 

Figure 2 XML and XSD 
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Figure 3 Map XSDs’ EIIs to generated ontologies’ classes (see online version for colours) 

 

Figure 4 Sub-class relationships (see online version for colours) 
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7.4 HasValue restrictions on datatype properties 

So far, the XSD’s EIIs are converted into sub-classes of the 
XSDMO’s super-classes representing XSD meta-EIIs. As 
next step EIIs’ attributes’ values are converted into datatype 
properties ‘<attribute>_<domain meta-EII>_String’ and into 
hasValue restrictions on XSDMO’s datatype properties: 

<domain EII> ⊑  <attribute>_<domain meta-EII>_String. 
{<String>} (see Figure 5). 

Figure 5 HasValue restrictions on datatype properties  
(see online version for colours) 

 

The value ‘Variable’ of the ‘element’ EII’s attribute ‘name’ 
(<xs:element name="Variable"…/>) is translated into the 
datatype property ‘name_Element_String’, pointing from an 
element to a string, and into the XSDMO’s datatype 

property’s hasValue restriction Variable-Element… ⊑  
name_Element_String.{‘Variable’}, since ‘Variable-
Element…’ resources must have at least one relationship 
along the datatype property ‘name_Element_String’ to the 
string ‘Variable’. In other words, variable elements must 
have the name ‘Variable’.    

7.5 Universal restrictions on object properties  

XSD’s EIIs and XSD’s EIIs’ attributes’ values are now 
translated. The last step is to map EIIs’ part-of relationships, 
XML elements and attributes’ content, and EIIs’ attributes’ 
values referring to either type definitions or other EIIs (see 
Figure 6).  
 
 

Values of EIIs’ attributes referring to other EIIs, are 
transformed into XSDMO’s object properties’ universal 

restrictions <domain EII> ⊑  <ref|substitutionGroup|refer>_ 
<domain meta-EII>_<range meta-EII>.<range EII>. 

Figure 6 Universal restrictions on object properties (see online 
version for colours) 

 

The value ‘Label’ of the ‘element’ EII’s attribute ‘ref’ 
(<xs:element ref="Label"/>) referring to the EII ‘element’ 
with the name ‘Label’ is translated into the object property 
‘ref_Element_Element’ and its universal restriction Label-

Element-Reference1… ⊑  ref_Element_Element.Label-
Element…. Values of EIIs’ attributes referring to type 
definitions are translated into universal restrictions on 

XSDMO’s object properties: <domain EII> ⊑  
type|base_<domain meta-EII>_Type.<range EII>. The value 
‘VariableType’ of the attribute ‘type’ of the EII ‘element’ 
with the name ‘Variable’ (<xs:element name="Variable" 
type = "VariableType"/>) is converted into the object 

property’s universal restriction Variable-Element… ⊑  
type_Element_Type . VariableType-Type…. The part-of 
relationship of the EII ‘sequence’ is translated into the 

object property’s universal restriction Sequence1… ⊑  
contains_Sequence_Element. Label-Element-Reference1…. 
The sequence includes only a reference to the global 
element ‘Label’. The strict order of the EIIs contained in the 
sequence is expressed by the object property’s universal 

restriction Sequence1… ⊑  sequence.Label-Element- 
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Reference1…. As resources of the class ‘Label-Element…’ 
may have text as content, i.e. ‘String-Type…’ individuals, 
the datatype property ‘value_Element_String’ is introduced 
and the datatype property’s universal restriction Label- 

Element… ⊑  value_Element_String.String is defined. 
While this means that instead of three simple nodes, we 
suddenly have a plethora of classes with long names, it also 
means that we adequately model the complete semantic 
relationships. We can fully appreciate how components 
relate to other ones on all three levels of instance, schema 
and metamodel. Since this is all automatically generated, 
this multiplication of information is not detrimental, but 
instead allows us to use all this data in a way that is fully 
integrated with each other. At no cost of time for the 
ontology engineer. Now, all the information located in the 
underlying XSDs of a specific domain is also expressed in 
generated ontologies.  

7.6 Derive domain ontology 

Structures of XSDs and generated ontologies are rather 
complex, generated ontologies do not correspond to the 
highest quality requirements of domain ontologies, and 
XSD and OWL have different modelling goals. Because of 
these reasons, our idea is not to use the generated ontologies 
directly. Instead, new classes, datatype and object properties 
are added based on the generated ontology. This happens 
automatically using SWRL rules. Figure 7 visualises the 
generated ontology, its RDF representation, the domain 
ontology’s extraction to be derived, and the SWRL rule’s 
atoms. 

We want to deduce an excerpt of DDI-RDF. More 
specifically, we want to derive that the resource with the 
URI ‘age’, assigned to the class ‘Variable-Element…’, is 
also a variable and that the same resource has the variable 
label ‘Age’ of the datatype ‘string’. The datatype property 
‘skos:prefLabel’ represents relationships between variables 
and variable labels.  

The following program fragment demonstrates the 
antecedent and the consequent of the SWRL rule which is 
executed to derive the two statements explained before.  

(?domain type_Element_Type ?a)  
(?a  
 contains_ComplexType_ComplexContent  

 ?b)  
(?b  
 contains_ComplexContent_Extension  

 ?c)  
(?c contains_Extension_Sequence ?d)  
(?d contains_Sequence_Element ?e)  
(?e ref_Element_Element ?f)  
(?f rdf:type Label-Element…)  
(?f value_Element_String ?range) -> 

(?domain rdf:type Variable)  
(?domain skos:prefLabel ?range) 

Figure 7 Derive domain ontology (see online version for colours) 

 

The two statements can be derived since the individual 
‘age’, substituting the SWRL variable ‘?domain’, has a 
relationship along the object property ‘type_Element_Type’ 
to an individual replacing the variable ‘a’. This resource  
is linked to an instance ‘?b’ via the ‘contains_Complex 
Type_ComplexContent’ object property. Further, there’s a 
navigation path from the ‘?b’ individual to the ‘?f’ instance 
through the stated object properties. As XML elements 
‘Label’, which are instances of the EII ‘element’ with the 
name ‘Label’ (<xs:element name="Label"/>), may contain 
text nodes such as ‘Age’, the ‘?f’ instance is assigned to the 
class ‘Label-Element…’, representing the EII ‘element’ 
with the value ‘Label’ of the attribute ‘name’. This class 
assignment ensures that derived variable labels are only 
those strings contained in the element ‘Label’ and not in 
other elements. According to the SWRL rule, the ‘?f’ 
resource must have a relationship along the datatype 
property ‘value_Element_String’ to a ‘?range’ individual 
substituted by the string ‘Age’. The concrete instances ‘age’ 
and ‘Age’ correspond to the antecedent of the SWRL rule, 
i.e. there is a navigation path from the resource ‘age’ to the 
string ‘Age’ through the stated object and datatype 
properties. Therefore, it can be inferred that the resource 
‘age’ is a variable with the variable label ‘Age’.  

The advantage of this rule is that it works purely on the 
schema level and can thus be reused for any instance or  
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document data we may encounter. By means of SWRL 
rules, generated ontologies’ instances can be mapped to 
individuals of widely used and accepted ontologies like 
Dublin Core or SKOS. Another benefit is that all XML data 
conforming to XSDs can be imported automatically as 
domain ontologies’ instances. In summary, the process of 
designing domain ontologies can now be supplemented with 
all of the XSDs’ information about the domains of interest, 
which allows us to automate part of the modeling and also 
to keep it closer to the original intention of the XSD.  

8 Evaluation 

Generic test cases, derived from the components of the XSD 
abstract data model, verify that any XSD can be translated 
into an OWL generated ontology and that XML documents 
corresponding to XSDs can be converted into RDF 
representations of generated ontologies. Bosch and Mathiak 
(2013) evaluated the proposed approach extensively and 
published the evaluation results on a GitHub repository.6 

The first step of our method is to transform XSDs into 
generated ontologies completely automatically using XSLT 
transformations. We converted multiple, widely known and 
accepted XSDs from the academic and from the industrial 
field. Our XSLT stylesheet translated 10,000 XSD 
constructs contained in 20 DDI-XSDs in only 30 seconds. 
The XSD of Simple Dublin Core with its 40 constructs was 
transformed in 1 second and the 5 XSDs of Qualified 
Dublin Core containing 250 XSD constructs in 7 seconds. 
All calculations can be made in under a minute. The effort 
in computing time is negligible in comparison with the time 
needed for the second step of the semi-automatic approach.  

The second step of our approach is to define SWRL 
rules in order to derive domain ontologies automatically on 
the instance and on the schema level. We specified SWRL 
rules for 3 different domain ontologies. For Simple Dublin 
Core,7 all SWRL rules were defined. For Qualified Dublin 
Core8 and the DDI-RDF Discovery Vocabulary9 (an 
ontology of DDI), a couple of representative SWRL rules 
for each of the SWRL rule types were written. For DDI-
RDF, we estimated 15 person-hours to define 200 SWRL 
rules. As these SWRL rules are written by hand, a graphical 
user interface could assist users by creating SWRL rules 
semi-automatically which would lead to time improvements.  

To verify the hypothesis that the time and the effort 
needed to deliver domain ontologies with high quality by 
use of the proposed approach is much less than creating 
domain ontologies completely manually, we determined the 
effort and the expenses for both approaches. DDI-RDF 
serves as use case, since we were part of the process of 
creating this ontology manually. 

For the evaluation of the semi-automatic approach, the 
time actually needed for the formalisation of the domain 
ontology and the time needed to develop the conceptual 
ideas have to be distinguished. As we can see from our 
experience with DDI-RDF, the effort required for the  
 

development of the conceptual ideas would be 50% of the 
working time spent for the traditional approach. 95 person-
days or 17,500 euros would have to be invested to evolve 
the ontology’s conceptual model. We would have to invest 2 
person-days or 350 euros for the formalisation of DDI-RDF, 
i.e. the definition of the OWL axioms and the SWRL rules. 
In total, we would have to spend 18,000 euros designing 
DDI-RDF based on the already available XSDs. 
Additionally, travelling, lodging, and board expenses have 
to be invested as domain experts have to come together 
discussing conceptual ideas. We calculate 20,000 euros for 
these expenses, which is the half of the travelling, lodging, 
and board expenses spent for the traditional approach. In 
total, 38,000 euros would be needed to design DDI-RDF 
using the semi-automatic approach. The total expenses 
creating DDI-RDF manually are 75,000 euros including the 
working times as well as travelling, lodging, and board 
expenses. For the semi-automatic approach only half of this 
amount is needed - namely 38,000 euros. 

9 Conclusions, results and future work 

This approach aims to speed up the task developing domain 
ontologies from the ground up. XSDs, characterising 
domain data models and already evolved by domain experts, 
serve as a basis since contained information is reused. 
Although RDF representations of generated ontologies, 
automatically created out of the XSDs within seconds, can 
be published in the LOD cloud and combined with other 
RDF datasets, our idea is to derive domain ontologies 
automatically out of the generated ontologies using SWRL 
rules. Additionally, resulting domain ontologies can be 
supplemented with semantic information not specified in the 
underlying XSDs. 

The overall concept of the approach has been finalised and 
the mapping of the XSD abstract data model components  
to class axioms of the XSDMO has been defined and 
implemented. The mapping between XSDs and OWL 
generated ontologies has been specified and programmatically 
realised as well. Also the generality of the approach has been 
verified, since the generic test cases have shown that all meta-
EIIs of the XSD meta-model are covered and thus, each XSD 
can be transformed into an OWL generated ontology using 
the same transformation rules.  

Currently, we are writing a Java program translating 
XML document instances into an RDF representation of the 
generated ontologies. Moreover, we will create additional 
Java code converting XML documents without corresponding 
XSDs. So far, the most relevant subsets of the DDI domain 
ontology are derived and appropriate SWRL rules are 
defined. As part of the approach’s limitations we will define 
use cases for which an automatic approach is suitable (e.g. 
when XSDs do not represent the domain knowledge 
sufficiently or when knowledge extraction is critical) and 
those for which it is not a good solution (e.g. when XSDs do  
not represent the domain knowledge correctly). We will  
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extend our comprehensive evaluation by converting more 
XSDs from different heterogeneous domains into generated 
ontologies and by applying the semi-automatic approach to 
more domain ontologies from different and heterogeneous 
communities. 
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1 http://lod-cloud.net/ 

2 http://www.w3.org/XML/Datamodel.html 

3 http://www.w3.org/TR/2009/NOTE-owl2-manchester-syntax-
20091027/ 

4 http://clarkparsia.com/pellet/ 

5 http://www.ddialliance.org/ 

6 https://github.com/boschthomas/PhD 
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