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Abstract. Designing an ontology for a specific domain is a time-consuming 
process. In many cases, information sources like XML Schemas serve as a basis 
for ontology engineers to conceptualize the intended ontologies. The ontology 
design process is sped up significantly when XML Schemas are transformed 
automatically into generated ontologies. An XML Schema Metamodel 
Ontology has been designed to represent the components of the XML Schema 
abstract data model. The generated ontologies’ classes are defined as sub 
classes of this ontology. The classes specified for the generated ontologies are 
intended to be further supplemented with additional semantic and domain 
specific information defined in domain ontologies. The resulting ontologies are 
as usable as ontologies that were constructed completely manual, but with a 
fraction of necessary effort.  
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1   Introduction 

XML has reached wide acceptance as a data exchange format in e-business. Data and 
metadata structured by ontologies can be published in the increasingly popular LOD 
cloud to get linked with a huge number of other RDF datasets [1]. As RDF is an 
established standard there is a plethora of tools which can be used to interoperate with 
data and metadata represented in RDF. An effective and efficient cooperation 
between e-business partners is only possible if they agree on a common syntax and 
have a common understanding of the domain classes. XML Schema and OWL 
support differing modeling goals. The data model of XML describes a node labeled 
tree [2], the syntactic structure of XML document instances. OWL, however, is based 
on the subject-predicate-object triples from RDF [3], based upon formal logic, and 
describes semantic information about domain classes as well as their relations and 
therefore allows the sharing of conceptualizations. XML represents a large set of 
information in many domains. This fact has driven the development of general-
purpose tools for converting XML Schemas to OWL ontologies. The direct mapping 
from XML and XML Schema to RDF and OWL is not sufficient, since it only 



transports information about the syntactic structure of XML document instances. 
Semantic information has to be added in a further step. The aim of this paper is to 
bridge the gap between XML and OWL by lifting the syntactic level of XML 
documents to the semantic level of OWL ontologies. The process of designing 
domain ontologies is extremely time-consuming. XML Schemas describing specific 
domains are often existent in early stages of the ontology design process. In this 
paper, the authors describe a generic multilevel approach which accelerates the 
process of  designing domain ontologies from scratch based on already available 
XML Schemas. The intention is to create generated ontologies automatically based on 
any possible XML Schemas of an underlying domain data model using XSLT 
transformations. Initially defined generated ontologies are linked to an ontology of the 
appropriate domain used to specify supplementary semantic information not covered 
in the XML Schemas. Domain experts enrich the domain ontology with additional 
semantics needed for tasks typically performed in the particular domain.   

2   Designing Domain Ontologies based on XML Schemas 

Figure 1 sketches the devised underlying concept of the generic multilevel approach 
for designing domain ontologies based on XML Schemas.  
 

 

Fig. 1. Generic multilevel approach for designing domain ontologies based on XML Schemas 

XSLT transformations map any XML Schemas to generated ontologies automatically. 
The XML Schema Metamodel Ontology serves as a basis for this process. Domain 
ontologies are related to generated ontologies in order to append semantic information 
not expressed in the XML Schemas. Further, you may integrate external ontologies’ 



semantics. The relationships between the separate levels of XML and between the 
distinct ontologies are delineated. You can derive generated ontologies and 
corresponding XML Schemas simultaneously, automatically and model-driven from 
the data model of the domain ontologies. The ensuing paragraphs present the different 
levels of XML, the individual ontologies and their relationships in more detail.  

2.1   XML Schema and the XML Schema Metamodel Ontology 

XML [4] documents are commonly used to store and transfer information in 
distributed environments. XML documents may be instances of XML Schemas [5] 
determining their terminology and syntactic structure. The W3C has defined XML 
Schema, the class of XML documents, recursively using the XML Schema language 
to describe the XML Schema language [6], just like XML Schema documents are 
XML documents describing XML documents. Generated ontologies are based on the 
components of the XML Schema abstract data model, the meta-model of XML 
Schema. Table 1 outlines the mappings between the XML Schema meta-model and 
the XML Schema Metamodel Ontology. In order to visualize OWL language 
constructs, Description Logic syntax is used.   

Table 1.  Mapping of the XML Schema meta-model to the XML Schema Metamodel Ontology 

XML Schema for XML Schemas XML Schema Metamodel Ontology 
meta-element information items classes: <meta-element information item> 
attributes of meta-element information 
items 

datatype properties and associated 
universal restrictions: <domain meta-
element information item> ⊑ 
∀<attribute>_<domain meta-element 
information item>_String.String 

texts contained in meta-element 
information items 

datatype property and associated 
universal restriction: <domain meta-
element information item> ⊑ 
∀valueXSD_<domain meta-element 
information item>_String.String 

texts contained in XML document 
instances’ components 

datatype property and associated 
universal restriction: <domain meta-
element information item> ⊑                     
∀valueXML_<domain meta-element 
information item>_String.String  

attributes of meta-element information 
items referring to meta-element 
information items 

object properties and associated universal 
restrictions: <domain meta-element 
information item> ⊑ 
∀<attribute>_<domain meta-element 
information item>_<range meta-element 
information item>.<range meta-element 
information item> 

attributes ‘type’ and ‘base’ object properties and associated universal 



restrictions: <domain meta-element 
information item> ⊑ 
∀type|base_<domain meta-element 
information item>_Type.Type 

meta-element information items’ part-
of relationships 

object properties and associated universal 
restrictions: <domain meta-element 
information item> ⊑ ∀contains_<domain 
meta-element information item>_<range 
meta-element information item>.<range 
meta-element information item> 

 
The authors have mapped the meta-element information items corresponding to the 
XML Schema abstract data model components (e.g. ‘element’) directly to classes of 
the XML Schema Metamodel Ontology (e.g. ‘Element’). Attributes of meta-element 
information items have been mapped to datatype properties ‘<attribute>_<domain 
meta-element information item>_String’ (e.g. ‘name_Element_String’) with the 
classes representing the meta-element information items as domains and the built-in 
primitive datatype ‘string’ as range. Universal restrictions on datatype properties have 
been defined, since all range individuals of these datatype properties have to be of the 
primitive datatype ‘string’: <domain meta-element information item> ⊑ ∀ 
<attribute>_<domain meta-element information item>_String.String (e.g. Element ⊑ 
∀ name_Element_String.String). As XML Schemas’ components can not only have 
child elements as content, but also plain text, the datatype property 
‘valueXSD_<domain meta-element information item>_String’ (e.g. 
‘valueXSD_Documentation_String’) and the associated universal restriction <domain 
meta-element information item> ⊑ ∀ valueXSD_<domain meta-element information 
item>_String.String (e.g. Documentation ⊑ ∀ valueXSD_Documentation_String. 
String) have been added, since the class representing the meta-element information 
item is a sub-class of the anonymous super-class of all the individuals which have 
only relationships along this datatype property to individuals of the class ‘String’ 
corresponding to the built-in datatype ‘string’ or have no relationships along this 
datatype property. The XML Schema Metamodel Ontology includes the datatype 
property ‘valueXML_<domain meta-element information item>_String’ and the 
corresponding universal restriction <domain meta-element information item> ⊑ ∀ 
valueXML_<domain meta-element information item>_String.String, since XML 
document instances’ components may contain text. Considering the OWL assertional 
knowledge, the XML document fragment <VariableName ... lang="en">EF1 
</VariableName> is mapped to the property assertions valueXML_Attribute_String 
(Lang-Individual, 'en') and valueXML_Element_String (VariableName-Individual, 
'EF1'). Attributes of meta-element information items such as ‘ref’ referring to meta-
element information items, have been transferred to object properties 
‘<attribute>_<domain meta-element information item>_<range meta-element 
information item>’ with corresponding universal restrictions <domain meta-element 
information item> ⊑ ∀ <attribute>_<domain meta-element information item>_<range 
meta-element information item>.<range meta-element information item> (e.g. 
Attribute ⊑ ∀ ref_Attribute_Attribute.Attribute). Diverse meta-element information 



items include the attributes ‘type’ or ‘base’. These attributes may have simple ur-type, 
simple type or complex type definitions as possible attribute values. According to the 
specified naming conventions, each attribute would be transformed into three 
different object properties with the ranges ‘AnySimpleType’, ‘SimpleType’ and 
‘ComplexType’. XSLT transformations, building generated ontologies automatically 
based on XML Schemas, would have to determine the range of the object properties 
belonging to specific ‘type’ and ‘base’ attributes at runtime. It is complicated and 
error-prone to determine if type references either point to simple or complex type 
definitions which are part of external XML Schemas’ namespaces. During the 
transformation process, XML Schemas with appropriate target namespaces have to be 
available and it has to be iterated over each simple and complex type. Due to these 
reasons, the authors have decided to map the attributes ‘type’ and ‘base’ to the object 
properties ‘type|base_<domain meta-element information item>_Type’ with the class 
‘Type’ as range. ‘Type’ represents the super-class of all three possible type 
definitions. As a consequence, each specific type definition can be in the range of the 
‘type’ and ‘base’ object properties. Universal restrictions on these object properties 
have been specified as well: <domain meta-element information item> ⊑ 
∀type|base_<domain meta-element information item>_Type.Type (e.g. Element ⊑ ∀ 
type_Element_Type.Type). Part-of relationships to child meta-element information 
items as content of meta-element information items have been transferred to object 
properties ‘contains_<domain meta-element information item>_<range meta-element 
information item>’. Universal restrictions on each object property have been defined, 
because the range of relationships along these object properties is assumed as fixed: 
<domain meta-element information item> ⊑ ∀ contains_<domain meta-element 
information item>_<range meta-element information item>.<range meta-element 
information item> (e.g. ComplexType ⊑ ∀ contains_ComplexType_SimpleContent. 
SimpleContent). 

2.2   Generated Ontologies 

Executing an XSLT script, the declarations and definitions of any XML Schemas are 
transformed into classes of generated ontologies directly and automatically. As all 
components of the normative XML Schema for XML Schemas are included in the 
XML Schema Metamodel Ontology, this works with all valid XML Schemas. The 
mapping process takes seconds and requires no human interaction. The generated 
ontologies’ classes are defined as sub-classes of the XML Schema Metamodel 
Ontology. Hence, all generated ontologies are based on the same reusable classes.  
Like heavyweight ontologies [7], the generated ontologies consist of a hierarchy of 
classes as well as relations with domains and ranges. Moreover, the generated 
ontologies include universal restrictions on object properties, hasValue restrictions on 
datatype properties and complex classes consisting of the union of multiple classes’ 
individuals, if universal restrictions on object properties have more than one class in 
the range. Table 2 depicts the mappings between XML Schemas and the generated 
ontologies. 



Table 2.  Mapping of XML Schemas to generated ontologies 

XML Schemas Generated Ontologies 
element information items sub-classes of XML Schema Metamodel 

Ontology’s classes: 
<element information item> ⊑           
<meta-element information item> 

values of element information items’ 
attributes 

hasValue restrictions on XML Schema 
Metamodel Ontology’s datatype 
properties: <element information item> ⊑  
∃<attribute>_<domain meta-element 
information item>_String.{<String>} 

texts contained in element information 
items 

hasValue restrictions on XML Schema 
Metamodel Ontology’s datatype 
properties: <element information item> ⊑ 
∃valueXSD_<domain meta-element 
information item>_String.{<String>} 

values of element information items’ 
attributes referring to other element 
information items 

universal restrictions on XML Schema 
Metamodel Ontology’s object properties: 
<domain element information item> ⊑ 
∀<attribute>_<domain meta-element 
information item>_<range meta-element 
information item>.<range element 
information item> 

values of attributes ‘type’ and ‘base’ universal restrictions on XML Schema 
Metamodel Ontology’s object properties: 
<domain element information item> ⊑ 
∀type|base_<domain meta-element 
information item>_Type.<range element 
information item> 

element information items’ part-of 
relationships 

universal restrictions on XML Schema 
Metamodel Ontology’s object properties: 
<domain element information item> ⊑ 
∀contains_<domain meta-element 
information item>_<range meta-element 
information item>.<union of range 
element information items> 

 
XML Schemas’ element information items are mapped to sub-classes of the XML 
Schema Metamodel Ontology’s classes: <element information item> ⊑ <meta 
element information item>. The element information item ‘element’ with the assigned 
name ‘VariableName’ (<xs:element name="VariableName" ... />), for example, is 
tranferred to the class ‘VariableName’ with ‘Element’ as super-class (VariableName ⊑ Element), since all ‘VariableName’ individuals are also part of the ‘Element’ class 
extension. Values of element information items’ attributes are transformed into 
hasValue restrictions on the XML Schema Metamodel Ontology’s datatype properties 



<element information item> ⊑  ∃ <attribute>_<domain meta-element information 
item>_String.{<String>},  as the element information item is the sub-class of the 
anonymous super-class of all the individuals which have at least one relationship 
along the datatype property ‘<attribute>_<domain meta-element information 
item>_String‘ to the specified individual of the primitive datatype ‘string’. For 
instance, the value of the attribute ‘name’ of the element information item ‘element’ 
(<xs:element name="VariableName" ... />) is converted to the datatype property 
hasValue restriction VariableName ⊑ ∃ name_Element_String.{'VariableName'}, 
since each element ‘VariableName’ has at least one associated name, namely 
‘VariableName’. Texts contained in element information items are mapped to 
hasValue restrictions on the XML Schema Metamodel Ontology’s datatype property 
<element information item> ⊑ ∃ valueXSD_<domain meta-element information 
item>_String.{<String>}. For example, the text included in the element information 
item ‘documentation’ (<xs:documentation>Indicates the language of 
content.</xs:documentation>) is translated into the datatype property hasValue 
restriction Documentation1 ⊑ ∃ valueXSD_Documentation_String. {'Indicates the 
language of content.'}. As element information items may contain more than one 
element information item of the same meta-element information item, the contained 
element information items’ identifiers are sequential (e.g. Documentation1). Values 
of element information items’ attributes referring to other element information items 
are converted to universal restrictions on the XML Schema Metamodel Ontology’s 
object properties <domain element information item> ⊑ ∀ <attribute>_<domain 
meta-element information item>_<range meta-element information item>.<range 
element information item>. The reference to the element information item ‘attribute’ 
called ‘lang’ (<xs:attribute ref="lang"/>) is transformed into the object property 
universal restriction Lang-Reference ⊑ ∀ ref_Attribute_Attribute.Lang. The values of 
the attributes ‘type’ and ‘base’ are transferred to universal restrictions on XML 
Schema Metamodel Ontology’s object properties: <domain element information 
item> ⊑ ∀ type|base_<domain meta-element information item>_Type.<range element 
information item>. The attribute ‘type’ of the element information item ‘element’ 
named ‘VariableName’ (<xs:element name="VariableName" type="NameType"/>), 
for example, is converted to the object property’s universal restriction VariableName ⊑ ∀ type_Element_Type.NameType. Element information items’ part-of 
relationships are realized by universal restrictions on XML Schema Metamodel 
Ontology’s object properties <domain element information item> ⊑ ∀ 
contains_<domain meta-element information item>_<range meta-element 
information item>.<union of range element information items>. The complex type 
definition ‘InternationalStringType’ includes only one ‘simpleContent’ element 
information item (<xs:complexType name="InternationalStringType"> 
...<xs:simpleContent>...</xs:simpleContent></xs:complexType>). As a consequence, 
the range of the object property can only consist of individuals of one class 
(InternationalStringType ⊑ ∀ contains_ComplexType_SimpleContent.Simple 
Content1). If element information items like ‘extension’ have more than one element 
information item as content (e.g. <xs:extension...><xs:attribute name="translated"...> 
...</xs:attribute><xs:attribute name="translatable"..>..</xs:attribute></xs:extension>), 
the domain element information items can only have relationships along the object 



property to individuals of the complex class consisting of the union of individuals of 
multiple classes representing the contained range element information items 
(Extension1 ⊑ ∀ contains_Extension_Attribute.(Translated ⊔ Translatable)). 

2.3   Domain Ontologies and Integration of Other Ontologies 

In domain ontologies, the semantics of classes are specified as exactly as needed 
using formal logic [7]. Each data model of a specific domain can be expressed in the 
form of a domain ontology. Classes of any number of generated ontologies of a given 
domain can be annotated as equivalent to classes of the domain ontology (<domain 
ontology class> ≡ <generated ontology class>). Thus, the information of a particular 
domain stored in generated ontologies and in corresponding XML Schemas can be 
reused during early stages of the domain ontology design process. Ontology engineers 
can add further domain specific semantic information to the domain ontology 
subsequently in a continuous way. You can perform queries on domain ontologies 
using the semantics of the particular domain without knowledge of complex XML 
Schemas’ structures. Requests on domain ontologies are propagated to the underlying 
generated ontology or ontologies (if the domain data model consists of more than one 
XML Schema) via equivalence relationships. Hence, there is no need to query each 
associated generated ontology individually using different classes, object and datatype 
properties. Classes of domain ontologies can be annotated as being equivalent to 
existing similar and widely adopted classes of external ontologies (<domain ontology 
class> ≡ <external ontology class>; other types of relationships are also possible). 
Due to this, reasoners may use additional semantic information defined in external 
ontologies for deductions [8].  

3   Related Work 

The XML Schema Metamodel Ontology, although much more complex, corresponds 
to the general database ontology designed by Kupfer et al. [8]. These ontology 
engineers have defined a database schema-to-ontology mapping, which means that 
specific database ontologies are generated automatically from any database schemas. 
Kupfer et al. have specified the conceptual model of the general database ontology as 
follows: databases can consist of multiple tables and tables can comprise diverse 
attributes. The authors used the three classes ‘Database’, ‘Table’, and ‘Attribute’ as 
well as the object property ‘consistsOf’ to describe database schemas. The classes’ 
identifiers serve as links to all tables and attributes of the underlying database 
schemas. Kupfer et al. depicted domain ontologies in the context of the developed 
general database ontology. Using domain ontologies, semantic information about 
specific domains is annotated and added supplementary to database ontologies. The 
relation between database ontologies’ classes and classes of domain ontologies has 
been conceptualized using the object property ‘containsDataAbout’. 
Several strategies lifting the syntactic level of XML documents to the semantic level 
of OWL ontologies can be distinguished. The authors have clustered appropriate tools 



implementing these transformations into three classes depending on the kind of 
conversion either at the instance, the conceptual, or both the instance and the 
conceptual level. At the instance level, Klein has developed the so-called RDF 
Schema mapping ontology enabling a one-way mapping of XML documents to RDF. 
Relevant XML documents’ content can be identified [9]. Extending this approach, 
Battle has introduced a bidirectional mapping of XML components to RDF [10]. The 
WEESA system implements an automatic transformation from XML to RDF using an 
OWL ontology, manually created from corresponding XML Schemas and manually 
defined rules. XML document instances are not mapped to OWL equivalents [11]. 
O’Connor and Das developed an approach transforming XML documents to 
individuals of an OWL ontology describing the serialization of the XML document. 
SWRL [12] is used to map these instances to individuals of a domain ontology [13]. 
At the conceptual level you can distinguish between approaches converting XML 
schema languages to RDFS or OWL. Several languages for writing schemas like 
DTD [4], XML Schema [5], DSD [14] and Relax NG [15] exist. The prototype 
OntoLiFT [16] offers a generic means for converting arbitrary XML schema 
languages to RDFS ontologies semi-automatically. In a first step, XML schema 
languages are transformed into regular tree grammars consisting of non-terminals, 
terminals, start symbols and production rules [17]. In a second step, non-terminals as 
well as terminals are converted to RDFS classes and production rules are mapped to 
RDF properties. In comparison with our approach, OntoLiFt converts any XML 
schema language and not just XML Schema to ontologies. Anicic et al. evolved an 
approach based on meta-models transforming between the different models of XML 
Schema and OWL [18]. 
At the instance and the conceptual level, there are methods transforming XML to 
RDF and XML Schema to either RDFS or OWL. Within the EU-funded project called 
‘Harmonise’ the interoperability of existing standards for the exchange of tourism 
data has been achieved by the transformation of  XML documents and XML Schemas 
into RDF and RDFS ontologies which have been mapped to each other [19]. Using 
the approach of O’Connor and Das [20], XML document instances are transformed to 
OWL ontologies even though associated XML Schemas not exist. As a consequence, 
unstructured contents can be mapped to OWL ontologies as well. XML Schemas can 
also be mapped to OWL ontologies, as XML Schema documents are represented in 
XML, too. New OWL ontologies can be generated from scratch and existing ones can 
be extended. O’Connor and Das evolved XML Master, a language describing OWL 
ontologies declaratively. XML Master combines the Manchester OWL Syntax [21] 
and XPath [22] to refer to XML content. O’Connor and Das criticize the limited and 
unsatisfactory number of OWL constructs supported by current tools converting XML 
Schemas to OWL ontologies. Thus, all OWL constructs are covered. One 
shortcoming associated with this method is that you have to write mapping language 
expressions manually and therefore you cannot transform XML documents and XML 
Schemas to OWL ontologies automatically. Another drawback is that ontology 
engineers have to be familiar with the Manchester OWL Syntax and XPath in order to 
express the mappings. Ferdinand et al. propose both mappings from XML to RDF and 
XML Schema to OWL which are independent of each other. This means, OWL 
individuals do not necessarily correspond to the OWL conceptual model, since XML 
documents’ declarations and definitions may be transferred to differing OWL 



constructs [23]. In addition, another system can be stated transferring XML Schema 
components to OWL language constructs at the terminological level and XML 
document instances to OWL individuals at the assertional level. XPath expressions 
are applied selecting XML documents’ content [24]. Besides that, the approach of 
Tous et al. is very similar to this method [25]. The authors of [26] devised a mapping 
between XML and RDF and between XML Schema and OWL .The authors assume 
that XML documents are structured like relational databases. Thus, XML documents’ 
relational structures are discovered and represented in OWL. Relations correspond to 
classes, columns to properties, and rows to instances. XML data model elements are 
mapped automatically to components of the OWL data model. Named simple and 
complex types, for instance, are transferred to classes. Elements, containing other 
elements or having at least one attribute, are converted to classes and object properties 
between these classes. Both elements, including neither attributes nor sub-elements, 
and attributes, assumed to represent database columns, are transformed into datatype 
properties with the surrounding element as their domain. Also, XML cardinality 
contraints are transformed into equivalent OWL cardinality restrictions.  
Many approaches try to extrac semantics from XML Schemas. The suggested 
approach, in contrast, only gains information about the syntactic structure of XML 
document instances contained in XML Schemas. Generated ontologies are connected 
with domain ontologies which are enriched with semantic domain specific 
information in a further step. The majority of the tools attempt to convert either 
schemas to ontologies at the conceptual level or XML to RDF at the instance level. 
The method, presented in this paper, follows a complete approach transforming XML 
document instances’ content to OWL individuals as well as XML Schemas to OWL. 
In comparison with our approach, many others transform XML to RDF and/or XML 
schema languages to ontologies in a manual or at most in a semi-automatic and not 
automatic manner. Furthermore, diverse existent methods generate RDFS ontologies 
and not the more expressive OWL ontologies. 

4   Conclusion 

The aim of this paper is to bridge the gap between XML and OWL. XML Schema and 
OWL ontologies follow differing modeling goals. While XML Schema describes the 
syntactic structure of XML document instances, OWL is based on formal logic and 
describes the semantics of data models. In this paper, the authors demonstrated a 
generic multilevel approach designing domain ontologies when XML Schemas are 
provided as input sources for the ontology design process. This process of designing 
ontologies from scratch requires considerable effort. The normal procedure of 
ontology engineers is specifying the domain ontologies’ semantics in collaboration 
with domain experts already at the beginning of the process. Applying our approach, 
ontology engineers are allowed to pursue a different path. They can rely on existent 
information located in XML Schemas of a given domain data model. To realize this, 
generated ontologies are built in an automatic way based on already available XML 
Schemas. Therefore, time-consuming work is already done and can be reused by the 
ontology engineers who do not have to define the domain data model anew. The 



generated ontologies’ classes are based on super-classes of the XML Schema 
Metamodel Ontology. This ontology consists of classes representing the components 
of the XML Schema abstract domain model and the corresponding element 
information items. The components of the XML Schema abstract data model are used 
to describe XML Schemas recursively using XML Schema language constructs. 
Based on interviews with domain experts, the information stored in the generated 
ontologies can be extended in a continuous manner. This supplemental semantic 
domain specific information is defined in domain ontologies whose classes are linked 
to the generated ontologies’ classes via equivalence relationships. Domain ontologies’ 
classes can be annotated as equivalent to classes of widely adopted external 
ontologies. As a consequence, reasoners may use additional semantics for deductions. 

5   Future Work 

A complete use case designing a specific domain ontology using the devised 
multilevel approach based on already existing XML Schemas will be described in 
detail. The underlying data model of the application domain is called the Data 
Documentation Initiative (DDI) [27]. DDI in its current version 3 is an international 
standard for describing data from the social, behavioral and economic sciences. 
Furthermore, more use cases from different domains will be shown to prove the 
generality of the developed approach. The main benefit associated with this approach,  
saving time for ontology engineers in the process of designing domain ontologies 
from scratch, will be evaluated as well. 
The authors will develop an XSLT framework to implement a complete stylesheet-
driven approach to generate OWL ontologies. So far, XSLT transformations build 
generated ontologies automatically based on arbitrary XML Schemas. Moreover, the 
authors will write XSLT transformations, converting XML documents without 
corresponding XML Schemas determining their syntactic structure to generated 
ontologies. The first step is creating suitable XML Schemas out of XML document 
instances automatically. These XML Schemas will then be converted to generated 
ontologies in a second step. Another XSLT stylesheet will convert XML document 
instances’ data to OWL instances according to the generated ontologies. Generated 
ontologies and corresponding XML Schemas will be derived automaticly from 
designed domain ontologies using XSLT transformations. These scripts will be 
evolved realizing the model-driven development of generated ontologies and 
underlying XML Schemas associated with the domain ontologies.  

References 

1.  Linked Data, http://linkeddata.org 
2. The XML data model, http://www.w3.org/XML/Datamodel.html 
3. Resource Description Framework (RDF): concepts and abstract syntax, 

http://www.w3.org/TR/2002/WD-rdf-concepts-20021108/ 



4. Extensible Markup Language (XML) 1.0 (fifth edition) - W3C recommendation 26 
November 2008, http://www.w3.org/TR/2008/REC-xml-20081126/ 

5. XML Schema part 0: primer second edition - W3C recommendation 28 October 2004, 
http://www.w3.org/TR/2004/REC-xmlschema-0-20041028/ 

6. XML Schema part 1: structures second edition - W3C recommendation 28 October 2004, 
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/ 

7. Stuckenschmidt, H.: Ontologien: Konzepte, Technologien und Anwendungen. Springer-
Verlag, Berlin Heidelberg (2009) 

8. Kupfer, A., Eckstein, S., Störmann B., Neumann K., Mathiak B.: Methods for a  
synchronised evolution of databases and associated ontologies. In: Proceeding of the 2007 
Conference on Databases and Information Systems IV. (2007) 

9. Klein, M.C.A.: Interpreting XML documents via an RDF Schema ontology. In: 13th 
International Workshop on Database and Expert Systems Applications, Aix-en-Provence 
(2002)  

10.Battle, S.: Gloze: XML to RDF and back again. In: 1st Jena User Conference, Bristol (2006) 
11.Reif, G., Gall, H, Jazayeri, M.: WEESA - web engineering for Semantic Web applications. 

In: 14th World Wide Web Conference, Chiba (2005) 
12.SWRL: a Semantic Web Rule Language combining OWL and RuleML, 

http://www.w3.org/Submission/SWRL/ 
13.O'Connor, M.J., Das, A.K.: Semantic reasoning with XML-based biomedical information 

models. In: 13th World Congress on Medical Informatics, Cape Town (2010) 
14.Karlund, N., Moller, A., Schwartzbach, M.I.: DSD: a schema language for XML. In: ACM 

SIGSOFT Workshop on Formal Methods in Software Practice. (2000)   
15.Clark, J., Cowan, J., Fitzgerald, M., Kawaguchi, J., Lubell, J., Murata, M., Walsh, N., 

Webber, D.: Information technology – document schema definition language (DSDL) – part 
2: regular-grammar-based validation – RELAX NG. ISO/IEC 19757-2:2003(E). (2003)   

16. Volz, R., Oberle, D., Staab, S., Studer R.: OntoLiFT Prototype – WonderWeb: ontology 
infrastructure for the Semantic Web. Karlsruhe (2003) 

17.Murata, M., Lee, D., Mani, M., Kawaguchi, K.: Taxonomy of XML schema languages using 
formal language theory. In: ACM Transactions on Internet Technology. vol. 5, New York 
(2005) 

18.Anicic, N., Ivezic, N., Marjanovic, Z.: Mapping XML Schema to OWL. In: Enterprise 
Interoperability, Part V, pp. 243--252, Springer, Berlin (2007) 

19.Dell’Erba, M., Fodor, O., Ricci, F., Werthner, H.: Harmonise: a solution for data 
interoperability. In: Proceedings of the 2nd IFIP Conference on E-Commerce, E-Business, 
E-Government I3E. (2002) 

20.O’Connor, M. J., Das, A. K.: Acquiring OWL ontologies from XML documents. In: 
Proceedings of the Sixth International Conference on Knowledge Capture, New York (2011) 

21. OWL 2 Web Ontology Language Manchester Syntax, http://www.w3.org/TR/owl2-
manchester-syntax/ 

22. XML Path Language (XPath) 2.0 (second edition), http://www.w3.org/TR/xpath20/ 
23.Ferdinand, M., Zirpins, C., Trastour, D.: Lifting XML Schema to OWL. In: Web 

Engineering - 4th International Conference, Munich (2004)  
24.Kobeissy, N., Genet, M.G., Zeghlache, D.: Mapping XML to OWL for seamless 

information retrieval in context-aware environments. In: International Conference on 
Pervasive Services, Istanbul (2007) 

25.Tous, R., Garcia, R., Rodriguez, E., Delgado, J.: Architecture of a semantic XPath 
processor. Application to digital rights management. In: 6th E-Commerce and Web 
Technologies, Copenhagen (2005) 

26.Bohring, H., Auer, S.: Mapping XML to OWL Ontologies. In: Leipziger Informatik Tage, 
vol. 72, Leipzig (2005)  

27.Data Documentation Initiative, http://www.ddialliance.org 


