
Validating RDF Data Quality using Constraints to
Direct the Development of Constraint Languages

Thomas Hartmann�, Benjamin Zapilko�, Joachim Wackerow�, Kai Eckert:
�GESIS - Leibniz Institute for the Social Sciences, Mannheim, Germany

Email: {firstname.lastname}@gesis.org
:Stuttgart Media University, Stuttgart, Germany

Email: eckert@hdm-stuttgart.de

Abstract—For research institutes, data libraries, and data
archives, RDF data validation according to predefined constraints
is a much sought-after feature, particularly as this is taken
for granted in the XML world. Based on our work in the
DCMI RDF Application Profiles Task Group and in cooperation
with the W3C Data Shapes Working Group, we identified and
published by today 81 types of constraints that are required
by various stakeholders for data applications. In this paper,
in collaboration with several domain experts we formulate 115
constraints on three different vocabularies (DDI-RDF, QB, and
SKOS) and classify them according to (1) the severity of an
occurring violation and (2) the complexity of the constraint
expression in common constraint languages. We evaluate the
data quality of 15,694 data sets (4.26 billion triples) of research
data for the social, behavioral, and economic sciences obtained
from 33 SPARQL endpoints. Based on the results, we formulate
several findings to direct the further development of constraint
languages.

I. INTRODUCTION

For constraint formulation and RDF data validation, several
languages exist or are currently developed. Shape Expressions
(ShEx), Resource Shapes (ReSh), Description Set Profiles
(DSP), OWL 2, the SPARQL Inferencing Notation (SPIN),
and SPARQL are the six most promising and widely used
constraint languages. OWL 2 is used as a constraint language
under the closed-world and unique name assumptions. The
W3C currently develops SHACL, an RDF vocabulary for
describing RDF graph structures. With its direct support of
validation via SPARQL, SPIN is very popular and certainly
plays an important role for future developments in this field.
It is particularly interesting as a means to validate arbitrary
constraint languages by mapping them to SPARQL [1]. Yet,
there is no clear favorite and none of the languages is able
to meet all requirements raised by data practitioners. Further
research and development therefore is needed.

In 2013, the W3C organized the RDF Validation Workshop,1

where experts from industry, government, and academia dis-
cussed first use cases for constraint formulation and RDF data
validation. In 2014, two working groups on RDF validation
have been established to develop a language to express con-
straints on RDF data: the W3C RDF Data Shapes Working
Group2 (33 participants of 19 organizations) and the DCMI

1http://www.w3.org/2012/12/rdf-val/
2http://www.w3.org/2014/rds/charter

RDF Application Profiles Task Group3 (29 people of 22 or-
ganizations) which among others bundles the requirements of
data institutions of the cultural heritage sector and the social,
behavioral, and economic (SBE) sciences and represents them
in the W3C group.

Within the DCMI task group, a collaboratively curated
database of RDF validation requirements4 has been created
which contains the findings of the working groups based on
various case studies provided by data institutions [2]. It is
publicly available and open for further contributions. The
database connects requirements to use cases, case studies,
and implementations and forms the basis of this paper. We
distinguish 81 requirements to formulate constraints on RDF
data; each of them corresponding to a constraint type.

In this paper, we collected constraints for commonly used
vocabularies in the SBE domain (see Section II), either from
the vocabularies themselves or from domain and data experts,
in order to gain a better understanding about the role of
certain requirements for data quality and to direct the further
development of constraint languages. All in all, this lead to 115
constraints on three vocabularies. We let the experts classify
the constraints according to the severity of their violation. Fur-
thermore, we classified each constraint type based on whether
it is expressible by RDFS/OWL, common high-level constraint
languages, or only by plain SPARQL (see Chapter IV).

As we do not want to base our conclusions on the evaluation
of vocabularies and constraint definitions alone, we conducted
a large-scale experiment. For all these 115 constraints, we
evaluated the data quality of 15,694 data sets (4.26 billion
triples) of SBE research data on three common vocabularies
in SBE sciences (DDI-RDF, QB, SKOS) obtained from 33
SPARQL endpoints. Based on the evaluation results, we for-
mulate several findings to direct the further development of
constraint languages. To make valid general statements for all
vocabularies, however, these findings still have to be verified
or falsified by evaluating the quality of data represented by
more than three vocabularies (Section V).

In this paper, we discuss constraints on RDF data in general.
Note that the data represented in RDF can be data in the
sense of SBE sciences, but also metadata about published or

3http://wiki.dublincore.org/index.php/RDF-Application-Profiles
4Online available at: http://purl.org/net/rdf-validation

unpublished data. We generally refer to both simply as RDF
data and only distinguish between data and metadata in the
data set descriptions.

II. COMMON VOCABULARIES IN SBE SCIENCES

We took all well-established and newly developed SBE
vocabularies into account and defined constraints for three
vocabularies commonly used in the SBE sciences which are
briefly introduced in the following. We analyzed actual data
according to constraint violations, as for these vocabularies
large data sets are already published.

SBE sciences require high-quality data for their empirical
research. For more than a decade, members of the SBE com-
munity have been developing and using a metadata standard,
composed of almost twelve hundred metadata fields, known as
the Data Documentation Initiative (DDI), 5 an XML format
to disseminate, manage, and reuse data collected and archived
for research. In XML, the definition of schemas containing
constraints and the validation of data according to these
constraints is commonly used to ensure a certain level of data
quality. With the rise of the Web of Data, data professionals
and institutions are very interested in publishing their data
directly in RDF or at least publish accurate metadata about
their data to facilitate discovery and reuse. Therefore, not only
established vocabularies like SKOS are used; recently, mem-
bers of the SBE and Linked Data community developed with
the DDI-RDF Discovery Vocabulary (DDI-RDF)6 a means to
expose DDI metadata as Linked Data.

The data most often used in research within SBE sciences
is unit-record data, i.e., data collected about individuals,
businesses, and households, in form of responses to studies
or taken from administrative registers such as hospital records
or registers of births and deaths. A study represents the process
by which a data set was generated or collected. The range of
unit-record data is very broad - including census, education,
health data and business, social, and labor force surveys.
This type of research data is held within data archives or
data libraries after it has been collected, so that it may be
reused by future researchers. By its nature, unit-record data
is highly confidential and access is often only permitted for
qualified researchers who must apply for access. Researchers
typically represent their results as aggregated data in form
of multi-dimensional tables with only a few columns: so-
called variables such as sex or age. Aggregated data, which
answers particular research questions, is derived from unit-
record data by statistics on groups or aggregates such as
frequencies and arithmetic means. The purpose of publicly
available aggregated data is to get a first overview and to gain
an interest in further analyses of the underlying unit-record
data. For more detailed analyses, researchers refer to unit-
record data including additional variables needed to answer
subsequent research questions.

Formal childcare is an example of an aggregated variable
which captures the measured availability of childcare services

5http://www.ddialliance.org/Specification/
6http://rdf-vocabulary.ddialliance.org/discovery.html

in percent over the population in European Union member
states by the dimensions year, duration, age of the child,
and country. Variables are constructed out of values (of
one or multiple datatypes) and/or code lists. The variable
age, e.g., may be represented by values of the datatype
xsd:nonNegativeInteger or by a code list of age clusters
(e.g., ’0 to 10’ and ’11 to 20’). The RDF Data Cube Vo-
cabulary (QB)7 is a W3C recommendation for representing
data cubes, i.e., multi-dimensional aggregated data, in RDF
[3]. A qb:DataStructureDefinition contains metadata of the
data collection. The variable formal childcare is modeled
as qb:measure, since it stands for what has been measured
in the data collection. Year, duration, age, and country are
qb:dimensions. Data values, i.e., the availability of child-
care services in percent over the population, are collected
in a qb:DataSet. Each data value is represented inside a
qb:Observation which contains values for each dimension.

For more detailed analyses we refer to the underlying
unit-record data. The aggregated variable formal childcare
is calculated on the basis of six unit-record variables (i.a.,
Education at pre-school) for which detailed metadata is given
(i.a., code lists) enabling researchers to replicate the results
shown in aggregated data tables. DDI-RDF is used to represent
metadata on unit-record data in RDF. The study (disco:Study)
for which the unit-record data has been collected contains
eight data sets (disco:LogicalDataSet) including variables
(disco:Variable) like the six ones needed to calculate the
variable formal childcare.

The Simple Knowledge Organization System (SKOS) is
reused to a large extend to build SBE vocabularies. The
codes of the variable Education at pre-school are mod-
eled as skos:Concepts and a skos:OrderedCollection orga-
nizes them in a particular order within a skos:memberList.
A variable may be associated with a theoretical concept
(skos:Concept) and skos:narrower builds the hierarchy of
theoretical concepts within a skos:ConceptScheme of a study.
The variable Education at pre-school is assigned to the
theoretical concept Child Care which is a narrower con-
cept of the top concept Education. Controlled vocabularies
(skos:ConceptScheme), serving as extension and reuse mech-
anism, organize types (skos:Concept) of descriptive statistics
(disco:SummaryStatistics) like minimum, maximum, and arith-
metic mean.

III. RELATED WORK

For data archives, research institutes, and data libraries,
RDF validation according to predefined constraints is a much
sought-after feature, particularly as this is taken for granted
in the XML world. DDI-XML documents, e.g., are validated
against diverse XML Schemas. As certain constraints cannot
be formulated and validated by XML Schemas, so-called
secondary-level validation tools like Schematron8 have been
introduced to overcome the limitations of XML validation.

7http://www.w3.org/TR/vocab-data-cube/
8https://msdn.microsoft.com/en-us/library/aa468554.aspx

Schematron generates validation rules and validates XML
documents according to them. With RDF validation, one can
overcome the drawbacks when validating XML documents.9

It cannot be validated, e.g., if each code of a variable’s code
list is associated with a category and that if an element has a
specific value then certain child elements must be present.

A well-formed RDF Data Cube is an RDF graph describing
one or more instances of qb:DataSet for which each of the
22 integrity constraints,10 defined within the QB specification,
passes. Each integrity constraint is expressed as narrative prose
and, where possible, as a SPARQL ASK query or query
template. If the ASK query is applied to an RDF graph then it
will return true if that graph contains one or more QB instances
which violate the corresponding constraint.

[4] investigated how to support taxonomists in improving
SKOS vocabularies by pointing out quality issues that go
beyond the integrity constraints defined in the SKOS speci-
fication.

Stardog ICV and Pellet ICV use OWL 2 constructs to formu-
late constraints. OWL in its current version 2 is an expressive
language which is based on formal logic and on the subject-
predicate-object triples from RDF. OWL offers knowledge
representation and reasoning services in combination with
SWRL. Validation, however, is not the primary purpose of
its design which has lead to claims that OWL cannot be
used for validation. [5] and [6], e.g., discuss the differences
between constraints and RDFS/OWL axioms. In practice,
however, OWL is well-spread and RDFS/OWL constructs are
widely used to tell people and applications about how valid
instances should look like. In general, RDF documents follow
the semantics of RDFS/OWL ontologies which could therefore
not only be used for reasoning but also for validation.

The semantics which is applied for RDF validation is
CWA/UNA. RDF validation requires that different names
represent different objects (unique name assumption (UNA)),
whereas OWL is based on the non-unique name assumption
(nUNA). Reasoning in OWL is based on the open-world
assumption (OWA), i.e., a statement cannot be inferred to be
false if it cannot be proved to be true. On the other hand,
RDF validation scenarios require the closed-world assumption
(CWA), i.e., a statement is inferred to be false if it cannot be
proved to be true. This ambiguity in semantics is one of the
main reasons why OWL has not been adopted as a standard
constraint language for RDF validation in the past. [7] propose
an alternative semantics for OWL using CWA/UNA so that
it could be used to validate integrity constraints. [8] claims
that DL and therefore OWL axioms can be interpreted in a
closed-world setting and used for constraint checking. When
using OWL axioms in terms of constraints, we adopt the same
semantics that is used for RDF validation.

9http://www.xmlmind.com/xmleditor/ distrib/doc/xmltool/xsd structure
limitations.html

10http://www.w3.org/TR/vocab-data-cube/#wf

IV. CLASSIFICATION OF CONSTRAINT TYPES AND
CONSTRAINTS

To gain better insights into the role that certain types of
constraints play for the quality of RDF data, we use two
simple classifications: on the one hand, we classify RDF
constraint types whether they are expressible by different types
of constraint languages and on the other hand, we classify
constraints formulated for a given vocabulary according to the
perceived severity of their violation.

Within the working groups, we identified by today 81 re-
quirements to formulate RDF constraints (e.g., R-75: minimum
qualified cardinality restrictions); each of them corresponding
to an RDF constraint type.11 Within a technical report, we
explain each requirement/constraint type in detail and give
examples for each expressed by different constraint languages
[9]. We provide mappings to representations in Description
Logics (DL) [10] to logically underpin each requirement and
to determine which DL constructs are needed to express
each constraint type. For the three vocabularies, several SBE
domain experts determined the default severity level of the
115 concrete constraints, which we published in a technical
report [11]. In the following, we summarize the classifications
of constraint types and constraints for the purpose of our
evaluation.

A. Classification of Constraint Types according to the Expres-
sivity of Constraint Languages

According to the expressivity of constraint languages, the
complete set of constraint types encompasses three not disjoint
sets of constraint types:

1) RDFS/OWL Based
2) Constraint Language Based
3) SPARQL Based
RDFS/OWL Based. The modeling languages RDFS and

OWL are typically used to formally specify vocabularies.
RDFS/OWL Based denotes the set of constraint types which
can be formulated with RDFS/OWL axioms which we use in
terms of constraints with CWA/UNA semantics and without
reasoning.12 RDFS/OWL axioms are commonly found within
formal specifications of vocabularies. RDFS/OWL Based con-
straints generally can be seen as a basic level of constraints
ensuring that the data is consistent with the formally and
explicitly specified intended semantics as well as the integrity
of vocabularies’ conceptual models about data.

Constraints of the type minimum qualified cardinality re-
strictions (R-75), e.g., guarantee that individuals of given
classes are connected by particular properties to at least n
different individuals/literals of certain classes or data ranges.
For DDI-RDF, a minimum qualified cardinality restriction can
be obtained from a respective OWL axiom which ensures

11Constraint types are uniquely identified by alphanumeric technical iden-
tifiers like R-71-CONDITIONAL-PROPERTIES

12The entailment regime is to be decided by the implementers. It is our point
that reasoning affects validation and that a proper definition of the reasoning
to be applied is needed.

that a disco:Questionnaire has (disco:question) at least one
disco:Question:

1 [a owl:Restriction ; rdfs:subClassOf Questionnaire ;
2 owl:minQualifiedCardinality 1 ;
3 owl:onProperty question ;
4 owl:onClass Question] .

Constraint Language Based and SPARQL Based are in
contrast to RDFS/OWL Based constraints usually not (yet)
explicitly defined within formal specifications of vocabularies.
Instead, they are often defined within textual descriptions
of vocabularies. Additionally, we let our domain and data
experts define constraints when they agreed that violating the
constraint would affect the usefulness of the data.

Constraint Language Based. We further distinguish Con-
straint Language Based as the set of constraint types that
can be expressed by common classical declarative high-level
constraint languages like ShEx, ReSh, and DSP. There is a
strong overlap between RDFS/OWL and Constraint Language
Based constraint types as in many cases constraint types
are expressible by both classical constraint languages and
RDFS/OWL. SPARQL, however, is considered as a low-
level implementation language in this context. In contrast to
SPARQL, high-level constraint languages are comparatively
easy to understand and constraints can be formulated more
concisely. Declarative languages may be placed on top of
SPARQL when using it as an implementation language. For
these Constraint Language Based constraint types, we expect
a straight-forward support in future constraint languages.

Context-specific exclusive or of property groups (R-11)
is a constraint type which can be formulated by a high-
level constraint language. Constraints of this type restrict
individuals of given classes to have properties defined within
exactly one of multiple mutually exclusive property groups.
Within the context of DDI-RDF, skos:Concepts can have either
skos:definition (when interpreted as theoretical concepts) or
skos:notation and skos:prefLabel properties (when interpreted
as codes), but not both:

1 ShEx: Concept {
2 (definition string) |
3 (notation string , prefLabel string) }

SPARQL Based. The set SPARQL Based encompasses con-
straint types that are not expressible by RDFS/OWL or com-
mon high-level constraint languages but by plain SPARQL.
For assessing the quality of thesauri, e.g., we concentrate
on the graph-based structure and apply graph- and network-
analysis techniques. An example of such constraints of the
constraint type structure is that a thesaurus should not contain
many orphan concepts, i.e., concepts without any associative
or hierarchical relations, lacking context information valuable
for search. As the complexity of this constraint is relatively
high, it is only expressible by SPARQL and not directly
understandable:

1 SELECT ?concept WHERE {
2 ?concept a [rdfs:subClassOf* skos:Concept] .
3 FILTER NOT EXISTS { ?concept ?p ?o .
4 FILTER (?p IN (skos:related, skos:relatedMatch,
5 skos:broader, ...)) . } }

SPARQL Based constraint types are today only expressible by
plain SPARQL. Depending on their usefulness, a support in
constraint languages should be considered.

B. Classification of Constraints according to the Severity of
Constraint Violations

A concrete constraint is instantiated from one of the 81 con-
straint types and is defined for a specific vocabulary. It does not
make sense to determine the severity of constraint violations
of an entire constraint type, as the severity depends on the
individual context and vocabulary. SBE experts determined
the default severity level13 for each of the 115 constraints
to indicate how serious the violation of the constraint is.
We use the classification system of log messages in software
development like Apache Log4j 2 [12], the Java Logging
API,14 and the Apache Commons Logging API15 as many data
practitioners also have experience in software development
and software developers intuitively understand these levels.
We simplify this commonly accepted classification system
and distinguish the three severity levels (1) informational, (2)
warning, and (3) error. Violations of informational constraints
point to desirable but not necessary data improvements to
achieve RDF representations which are ideal in terms of syntax
and semantics of used vocabularies. Warnings are syntactic
or semantic problems which typically should not lead to an
abortion of data processing. Errors, in contrast, are syntactic
or semantic errors which should cause the abortion of data
processing.

Note that there is a correlation between the severity of a
constraint and the classification according to the expressivity
of constraint languages of its type: RDFS/OWL Based con-
straints are in many cases classified with an error level as they
typically represent basic constraints; there is a reason why they
have been included in the vocabulary specification. Although
we provide default severity levels for each constraint, valida-
tion environments should enable users to adapt the severity
levels of constraints according to their individual needs.

C. Examples

To get an overview on the sets of constraint types, we
delineate concrete constraints on the three vocabularies for
each set of constraint type and classify them according to their
severity.

RDFS/OWL Based. It is a common requirement to
narrow down the value space of properties by an
exhaustive enumeration of valid values (R-30/37: al-
lowed values): disco:CategoryStatistics, e.g., can only have
disco:computationBase relationships to the values valid and
invalid of the datatype rdf:langString (default severity level:
error). Consider the following DL knowledge base K:16

13The possibility to define severity levels in vocabularies is in itself a
requirement (R-158).

14http://docs.oracle.com/javase/7/docs/api/java/util/logging/Level.html
15http://commons.apache.org/proper/commons-logging/
16A DL knowledge base is a collection of formal statements which

correspond to facts or what is known explicitly.

K � t CategoryStatistics � @ computationBase.
{valid,invalid} [langString,
Variable � D concept.Concept,
DataSet � @ structure.DataStructureDef,
D hasTopConcept.J � ConceptScheme,
J � @ variable.Variable }

Existential quantifications (R-86) enforce that instances of
given classes must have some property relation to individ-
uals/literals of certain types. Variables, e.g., should have a
relation to a theoretical concept (informational). The variable
Education at pre-school is associated with the theoretical
concept Child Care. The default severity level of this con-
straint is weak, as in most cases research can be continued
without having information about the theoretical concept of
a variable. A universal quantification (R-91) contains all
those individuals that are connected by a property only
to individuals/literals of particular classes or data ranges.
Only qb:DataSets, e.g., can have qb:structure relationships to
qb:DataStructureDefinitions (error). Property domains (R-25,
R-26) and property ranges (R-28, R-35) constraints restrict
domains and ranges of properties: only skos:ConceptSchemes,
e.g., can have skos:hasTopConcept relationships (error) and
disco:variable relations can only point to disco:Variables
(error).

It is often useful to declare a given (data) property as the
primary key (R-226) of a class, so that a system can enforce
uniqueness and build URIs from user inputs and imported
data. In DDI-RDF, resources are uniquely identified by the
property adms:identifier, which is therefore inverse-functional
pfunct identifier q, i.e., for each rdfs:Resource x, there
can be at most one distinct resource y such that y is connected
by adms:identifier to x (error). Keys, however, are even more
general than inverse-functional properties (R-58), as a key
can be a data property, an object property, or a chain of
properties [13]. For this reason, as there are different sorts
of key, and as keys can lead to undecidability, DL is extended
with the construct keyfor (identifier keyfor Resource)
[14] which is implemented by the OWL 2 hasKey construct.

Constraint Language Based. Depending on property
datatypes, two different literal values have a specific ordering
with respect to operators like <(R-43: literal value compar-
ison). Start dates (disco:startDate), e.g., must be before (<)
end dates (disco:endDate).

In many cases, resources must be members of controlled
vocabularies (R-32). If a QB dimension property, e.g., has a
qb:codeList, then the value of the dimension property on every
qb:Observation must be in the code list (error).

Default values for objects (R-31) or literals (R-38) of
given properties are inferred automatically when properties
are not present in the data. The value true for the property
disco:isPublic indicates that a disco:LogicalDataSet can be
accessed by anyone. Per default, however, access to data sets
should be restricted (false) (informational).

SPARQL Based. The purpose of data model consis-
tency constraints is to ensure the integrity of the data ac-
cording to the intended semantics of vocabularies. Every

qb:Observation, e.g., must have a value for each dimension
declared in its qb:DataStructureDefinition (error) and no two
qb:Observations in the same qb:DataSet can have the same
value for all dimensions (warning). If a qb:DataSet D has
a qb:Slice S, and S has an qb:Observation O, then the
qb:DataSet corresponding to O must be D (warning).

Objects/literals can be declared to be ordered for given
properties (R-121/217: ordering). Variables, questions, and
codes, e.g., are typically organized in a particular or-
der. If codes (skos:Concept) should be ordered, they must
be members (skos:memberList) in an ordered collection
(skos:OrderedCollection), the variable’s code list (informa-
tional).

It is useful to declare properties to be conditional (R-71),
i.e., if particular properties exist (or do not exist), then other
properties must also be present (or absent). To get an overview
on a study either an abstract, a title, an alternative title, or
links to external descriptions should be provided. If an abstract
and an external description are absent, however, a title or an
alternative title should be given (warning). In case a variable
is represented in form of a code list, codes may be associated
with categories, i.e., human-readable labels (informational).
The variable Education at pre-school, e.g., is represented as
an ordered code list without any categories.

For data properties, it may be desirable to restrict that
values of predefined languages must be present for determined
number of times (R-48/49: language tag cardinality): (1) It
is checked if literal language tags are set. Some controlled
vocabularies, e.g., contain literals in natural language, but
without information what language has actually been used
(warning). (2) Language tags must conform to language
standards (error). (3) Some thesaurus concepts are labeled in
only one, others in multiple languages. It may be desirable
to have each concept labeled in each of the languages that
are also used on the other concepts, as language coverage
incompleteness for some concepts may indicate shortcomings
of thesauri (informational) [4].

V. EVALUATION

In this section, we describe our findings based on an auto-
matic constraint checking of a large data set. Despite the large
volume of the data sets in general, this study only uses data
for three vocabularies. As described in Section II, for other vo-
cabularies there is often not (yet) enough data openly available
to draw general conclusions. The three vocabularies, however,
are representative, cover different aspects of SBE data, and
are also a mixture of widely adopted and accepted well-
established vocabularies (QB, SKOS) and a vocabulary under
development (DDI-RDF17). As the evaluation is based on three
vocabularies, we cannot make valid general statements for all
vocabularies, but we can formulate several findings to direct
the further development of constraint languages. As these
findings cannot be proved yet, they still have to be verified
or falsified by evaluating the quality of data represented by
further well-established and newly developed vocabularies.

17Expected publication end of 2015.

A. Experimental Setup

On the three vocabularies (DDI-RDF, QB, SKOS), we iden-
tified and classified 115 constraints18 which we implemented
for data validation. We ensured that the implementation of
the constraints is equally distributed over the classes and
vocabularies we have. We then evaluated the data quality
of 15,694 data sets (4.26 billion triples) of SBE research
data using these 115 constraints, obtained from 33 SPARQL
endpoints.

Table I lists the number of validated data sets and the overall
sizes in terms of triples for each of the vocabularies. We vali-
dated, i.a., (1) QB data sets published by the Australian Bureau
of Statistics, the European Central Bank, and the Organisation
for Economic Co-operation and Development, (2) SKOS the-
sauri like the AGROVOC Multilingual agricultural thesaurus,
the STW Thesaurus for Economics, and the Thesaurus for the
Social Sciences, and (3) DDI-RDF data sets provided by the
Microdata Information System, the Data Without Boundaries
Discovery Portal, the Danish Data Archive, and the Swedish
National Data Service. In a technical report, we describe the
evaluation in further detail [15]. Furthermore, we published
the evaluation results for each QB data set in form of one
document per SPARQL endpoint.19

TABLE I: Validated Data Sets for each Vocabulary

Vocabulary Data Sets Triples

QB 9, 990 3, 775, 983, 610
SKOS 4, 178 477, 737, 281
DDI-RDF 1, 526 9, 673, 055

Since the validation of each of the 81 constraint types can be
implemented using SPARQL, we use SPIN, a SPARQL-based
way to formulate and check constraints, as basis to develop
a validation environment to validate RDF data according
to constraints expressed by arbitrary constraint languages20

[1]. The RDF Validator21 can directly be used to validate
arbitrary RDF data for the three vocabularies. Additionally,
own constraints on any vocabulary can be defined using
several constraint languages. The SPIN engine checks for each
resource if it satisfies all constraints, which are associated
with its assigned classes, and generates a result RDF graph
containing information about all constraint violations. There
is one SPIN construct template for each constraint type. A
SPIN construct template contains a SPARQL CONSTRUCT
query which generates constraint violation triples indicating
the subject and the properties causing constraint violations
and the reason why constraint violations have been raised. A
SPIN construct template creates constraint violation triples if

18All 115 implemented constraints are online available at: https://github.
com/boschthomas/rdf-validation/tree/master/constraints

19Online available at: https://github.com/boschthomas/rdf-validation/tree/
master/evaluation/data-sets/data-cube

20Constraint language implementations online available at: https://github.
com/boschthomas/rdf-validation/tree/master/SPIN

21Online demo available at: http://purl.org/net/rdfval-demo, source code
online available at: https://github.com/boschthomas/rdf-validator

all triple patterns within the SPARQL WHERE clause match.

B. Evaluation Results and Formulation of Findings

Tables II and III show the results of the evaluation, more
specifically the constraints and the constraint violations, which
are caused by these constraints, in percent; whereas the
numbers in the first line indicate the absolute amount of
constraints and violations. The constraints and their raised
violations are grouped by vocabulary, which type of language
the constraint types are formulated with, and their severity
level. The numbers of validated triples and data sets differ
between the vocabularies as we validated 3.8 billion QB, 480
million SKOS, and 10 million DDI-RDF triples. To be able to
formulate findings which apply for all vocabularies, we only
use normalized relative values representing the percentage of
constraints and violations belonging to the respective sets.

There is a strong overlap between RDFS/OWL and Con-
straint Language Based constraint types as in many cases
constraint types are expressible by RDFS/OWL and classical
constraint languages. This is the reason why the percentage
values of constraints and violations grouped by the classi-
fication of constraint types according to the expressivity of
constraint languages do not accumulate to 100%.

TABLE II: Constraints and Constraint Violations (1)

DDI-RDF QB
C CV C CV
78 3,575,002 20 45,635,861

SPARQL 29.5 34.7 60.0 100.0
CL 64.1 65.3 40.0 0.0
RDFS/OWL 66.7 65.3 40.0 0.0
info 56.4 52.6 0.0 0.0
warning 11.5 29.4 15.0 99.8
error 32.1 18.0 85.0 0.3

C (constraints), CV (constraint violations)

TABLE III: Constraints and Constraint Violations (2)

SKOS Total
C CV C CV
17 5,540,988 115 54,751,851

SPARQL 100.0 100.0 63.2 78.2
CL 0.0 0.0 34.7 21.8
RDFS/OWL 0.0 0.0 35.6 21.8
info 70.6 41.2 42.3 31.3
warning 29.4 58.8 18.7 62.7
error 0.0 0.0 39.0 6.1

C (constraints), CV (constraint violations)

Almost 2/3 of all constraints, nearly 1/3 of the DDI-
RDF, 60% of the QB, and all SKOS constraints are SPARQL
Based. For well-established vocabularies, the most formulated
constraints are SPARQL Based (80%). For newly developed
vocabularies, however, the most expressed constraints are
RDFS/OWL Based (2/3). Nearly 80% of all violations are
caused by SPARQL, 1/5 by Constraint Language, and 1/5 by
RDFS/OWL Based constraints.

Finding 1 The facts that 80% of all violations are raised by
SPARQL Based constraints and that 2/3 of all constraints are

SPARQL Based, increases the importance to formulate con-
straints, which up to now can only be expressed in SPARQL,
using high-level constraint languages. Data quality can be
significantly improved when suitable constraint languages are
developed which enable to define SPARQL Based constraints
in an easy, concise, and intuitive way. Thereby, the more
elaborate a vocabulary is, the more sophisticated and complex
constraints are specified using SPARQL.

These constraints are of such complexity that up to now in
most cases they can only be expressed by plain SPARQL.
It should be an incentive for language designers to devise
languages which are more intuitive than SPARQL in a way
that also domain experts, which are not familiar with SPARQL,
can formulate respective constraints.

Finding 2 The fact that only 1/5 of all violations result
from RDFS/OWL Based constraints, even though 1/3 of all
constraints are RDFS/OWL Based, indicates good data quality
for all vocabularies with regard to their formal specifications.

Finding 3 As 1/3 of all constraints are RDFS/OWL Based,
the first step to make progress in the further development of
constraint languages is to cover the constraint types which
can already be formulated using RDFS and OWL.

While 2/3 of the DDI-RDF violations result from
RDFS/OWL Based constraints, QB and SKOS violations are
only raised by SPARQL Based constraints.

Finding 4 For well-established vocabularies, RDFS/OWL
Based constraints are almost completely satisfied which gener-
ally indicates very impressive data quality, at least in the SBE
domain and for the basic requirements. For newly developed
vocabularies, however, data quality is poor as RDFS/OWL
Based constraints are not fulfilled.

For DDI-RDF, data providers still have to understand the
vocabulary and of course data cannot have high quality if
the specification is not yet stable. It is likely that a newly
developed vocabulary is still subject of constant change and
that early adopters did not properly understand its formal
specification. Thus, published data may not be consistent
with the current draft of its conforming vocabulary. In case
newly developed vocabularies turn into well-established ones,
data providers are experienced in publishing their data in
conformance with these vocabularies and formal specifications
are more elaborated. As a consequence, RDFS/OWL Based
constraints are satisfied to a greater extend which leads to
better data quality. The reason why we only defined SPARQL
Based constraints for assessing the quality of thesauri is that
literature and practice especially concentrate on evaluating
graph-based structures of thesauri by applying graph- and
network-analysis techniques which can only be implemented
by SPARQL.

Almost 40% of all constraints are error, more than 40%
are informational, and nearly 20% are warning constraints.
Informational constraints caused almost 1/3 and warning con-
straints narrowly 2/3 of all violations.

Finding 5 Although 40% of all constraints are error con-
straints, the percentage of severe violations is very low,
compared to about 2/3 of warning and 1/3 of informational
violations. This implies that data quality is high with regard
to the severity level of constraints and that proper constraint
languages can significantly improve data quality beyond fun-
damental requirements.

We did not detect violations of error constraints for well-
established vocabularies, even though 85% of the QB con-
straints are error constraints. More than 50% of the DDI-RDF
and SKOS constraints are informational constraints. 1/6 of
the DDI-RDF violations are caused by error constraints and
almost all QB and 59% of the SKOS violations are caused by
warning constraints.

Finding 6 For well-established vocabularies, data quality is
high as serious violations rarely appear (0.3% for QB). For
newly developed vocabularies, however, data quality is worse
as serious violations occur partially (1/6 for DDI-RDF).

Especially for newly developed vocabularies, constraint
languages should be used to a larger extend in addition to
RDFS/OWL in order to define appropriate constraints to detect
and solve severe violations.

80% of the violations which are raised by either RDFS/OWL
or Constraint Language Based constraints are caused by
constraints with the severity level informational (see Table IV)
and almost all (94%) of the violations which are caused by
SPARQL Based constraints are raised by warning constraints.
Approx. 1/2 of all constraints are informational constraints
regardless how their types are classified according to the
expressivity of constraint languages.

TABLE IV: Language Expressivity and Severity Level

RDFS/OWL CL SPARQL
C CV C CV C CV

info 52.5 79.64 55.2 79.60 45.1 4.39
warning 18.0 20.28 15.5 20.27 19.6 94.17
error 29.5 0.08 29.3 0.13 35.3 1.43

C (constraints), CV (constraint violations)

Finding 7 Whatever language is used to formulate con-
straints, 1/2 of all constraints are informational, 1/3 are error,
and 1/5 are warning constraints.

The fact that regardless of the language 1/2 of all constraints
are informational indicates the importance that constraint
languages support constraints on several levels. Constraints
are by far not only to prevent certain usages of a vocabulary,
they are rather needed to provide better guidance for improved
interoperability.

Finding 8 Regardless of the type of the used language, there
are only a few violations raised by error constraints which
stands for good data quality in general. In contrast, con-
straints of low severity, expressed by RDFS/OWL or high-level
constraint languages, are violated to a large extent (80%),
whereas more serious constraints, expressed by SPARQL, are

violated to an even larger extend (94%).

94% of the violations of SPARQL-based constraints are
warnings. This means that data quality could be improved
significantly, if these constraints are met. This is more likely
when these constraints are expressible not only by SPARQL
but also by high-level constraint languages enabling to formu-
late constraints more intuitively and concisely.

VI. CONCLUSION AND FUTURE WORK

We published by today 81 constraint types that are required
by various stakeholders for data applications. In close collab-
oration with several domain experts for the social, behavioral,
and economic (SBE) sciences, we formulated 115 constraints
on three different vocabularies (DDI-RDF, QB, SKOS) and
classified them according to their severity level and whether
their type is expressible by different types of constraint lan-
guages - RDFS/OWL, high-level constraint languages, and
SPARQL. Using these constraints, we evaluated the data
quality of 15,694 data sets (4.26 billion triples) of research data
for the SBE sciences obtained from 33 SPARQL endpoints.

Based on the evaluation results, we formulated several find-
ings to direct the further development of constraint languages.
The general applicability of these findings, however, is still to
be confirmed beyond the examined vocabularies and for other
domains. The main findings are:

1) Data quality can be significantly improved when suitable
constraint languages are developed enabling to define
constraints, which up to now can only be expressed by
plain SPARQL, in an easy, concise, and intuitive way.
Thereby, the more elaborate a vocabulary is, the more
sophisticated and complex constraints are necessary
which can up to now only be specified by SPARQL.

2) As only 1/5 of all violations result from RDFS/OWL
Based constraints, even though 1/3 of all constraints
are RDFS/OWL Based, data quality is high for all
vocabularies with regard to their formal specifications.

3) Although 40% of all constraints are error constraints,
the percentage of severe violations is very low, com-
pared to about 2/3 of warning and 1/3 of informational
violations. This implies that data quality is high with
regard to the severity level of constraints and that
proper constraint languages can significantly improve
data quality beyond fundamental requirements.

4) Whatever language is used to formulate constraints,
1/2 of all constraints are informational, 1/3 are error,
and 1/5 are warning constraints. Violations caused
by constraints expressed by RDFS/OWL or high-level
constraint languages are of low severity, whereas the
violation of constraints formulated by SPARQL is more
serious. There is a significant demand for languages that
support the expression of SPARQL Based constraints
causing 94% of all violations.

We have been really impressed by the high quality of the
QB and SKOS data. This is in contrast to the sometimes heard
rumor that Linked Open Data lacks quality. We are actively

involved in the further development and implementation of
constraint languages and will use the results presented in
the paper to set priorities on features where we expect the
highest impact on the data quality of real-life data in the SBE
domain. As the use of constraint languages per se enhances
data quality, it must be continued working intensively on their
further development.

REFERENCES

[1] T. Bosch and K. Eckert, “Towards Description Set Profiles for RDF using
SPARQL as Intermediate Language,” in Proceedings of the 14th DCMI
International Conference on Dublin Core and Metadata Applications
(DC 2014), Austin, Texas, USA, 2014, http://dcevents.dublincore.org/
IntConf/dc-2014/paper/view/270.

[2] ——, “Requirements on RDF Constraint Formulation and Validation,”
in Proceedings of the 14th DCMI International Conference on Dublin
Core and Metadata Applications (DC 2014), Austin, Texas, USA, 2014,
http://dcevents.dublincore.org/IntConf/dc-2014/paper/view/257.

[3] R. Cyganiak, S. Field, A. Gregory, W. Halb, and J. Tennison, “Semantic
Statistics: Bringing Together SDMX and SCOVO,” in Proceedings of the
International World Wide Web Conference (WWW 2010), Workshop on
Linked Data on the Web, ser. CEUR Workshop Proceedings, C. Bizer,
T. Heath, T. Berners-Lee, and M. Hausenblas, Eds., vol. 628, 2010,
http://ceur-ws.org/Vol-628/ldow2010 paper03.pdf.

[4] C. Mader, B. Haslhofer, and A. Isaac, “Finding Quality Issues in SKOS
Vocabularies,” in Proceedings of the Second International Conference
on Theory and Practice of Digital Libraries, ser. TPDL’12. Berlin,
Heidelberg: Springer-Verlag, 2012, pp. 222–233, http://link.springer.
com/chapter/10.1007%2F978-3-642-33290-6 25.

[5] B. Motik, I. Horrocks, and U. Sattler, “Adding Integrity Constraints
to OWL,” in Proceedings of the OWLED 2007 Workshop on OWL:
Experiences and Directions, vol. 258, Innsbruck, Austria, June 2007,
http://ceur-ws.org/Vol-258/.

[6] ——, “Bridging the Gap Between OWL and Relational Databases,”
Journal of Web Semantics, vol. 7, no. 2, pp. 74–89, April 2009,
http://www.websemanticsjournal.org/index.php/ps/article/view/159.

[7] J. Tao, E. Sirin, J. Bao, and D. L. McGuinness, “Integrity Constraints
in OWL,” in Proceedings of the 24th AAAI Conference on Artificial
Intelligence (AAAI 2010), Atlanta, Georgia, USA, July 2010, https://
www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/viewFile/1931/2229.

[8] P. F. Patel-Schneider, “Using Description Logics for RDF Constraint
Checking and Closed-World Recognition,” in Proceedings of the 29th
AAAI Conference on Artificial Intelligence (AAAI-2015), Austin Texas,
USA, January 2015, http://www.aaai.org/ocs/index.php/AAAI/AAAI15/
paper/view/9531.

[9] T. Bosch, A. Nolle, E. Acar, and K. Eckert, “RDF Validation Re-
quirements - Evaluation and Logical Underpinning,” Computing Re-
search Repository (CoRR), vol. abs/1501.03933, 2015, http://arxiv.org/
abs/1501.03933.

[10] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-
Schneider, Eds., The Description Logic Handbook: Theory, Implemen-
tation, and Applications. New York, NY, USA: Cambridge University
Press, 2003.

[11] T. Hartmann, B. Zapilko, J. Wackerow, and K. Eckert, “Constraints to
Validate RDF Data Quality on Common Vocabularies in the Social,
Behavioral, and Economic Sciences,” Computing Research Repository
(CoRR), vol. abs/1504.04479, 2015, http://arxiv.org/abs/1504.04479.

[12] Apache Software Foundation, “Apache Log4j 2 v. 2.3 User’s Guide,”
Apache Software Foundation, Tech. Rep., May 2015, http://logging.
apache.org/log4j/2.x/log4j-users-guide.pdf.

[13] M. Schneider, “OWL 2 Web Ontology Language RDF-Based Seman-
tics,” W3C, W3C Recommendation, October 2009, http://www.w3.org/
TR/2009/REC-owl2-rdf-based-semantics-20091027/.

[14] C. Lutz, C. Areces, I. Horrocks, and U. Sattler, “Keys, Nominals,
and Concrete Domains,” Journal of Artificial Intelligence Research,
vol. 23, no. 1, pp. 667–726, Jun. 2005, http://dl.acm.org/citation.cfm?
id=1622503.1622518.

[15] T. Hartmann, B. Zapilko, J. Wackerow, and K. Eckert, “Evaluating the
Quality of RDF Data Sets on Common Vocabularies in the Social,
Behavioral, and Economic Sciences,” Computing Research Repository
(CoRR), vol. abs/1504.04478, 2015, http://arxiv.org/abs/1504.04478.

