
The Role of Reasoning for RDF Validation

Thomas Bosch
GESIS - Leibniz Institute for

the Social Sciences, Germany
thomas.bosch@gesis.org

Erman Acar
University of Mannheim,

Germany
erman@informatik.uni-

mannheim.de

Andreas Nolle
Albstadt-Sigmaringen
University, Germany

nolle@hs-albsig.de

Kai Eckert
Stuttgart Media University,

Germany
eckert@hdm-stuttgart.de

ABSTRACT
For data practitioners embracing the world of RDF and
Linked Data, the openness and flexibility is a mixed bless-
ing. For them, data validation according to predefined con-
straints is a much sought-after feature, particularly as this
is taken for granted in the XML world. Based on our work
in the DCMI RDF Application Profiles Task Group and in
cooperation with the W3C Data Shapes Working Group,
we published by today 81 types of constraints that are re-
quired by various stakeholders for data applications. These
constraint types form the basis to investigate the role that
reasoning and different semantics play in practical data val-
idation, why reasoning is beneficial for RDF validation, and
how to overcome the major shortcomings when validating
RDF data by performing reasoning prior to validation. For
each constraint type, we examine (1) if reasoning may im-
prove data quality, (2) how efficient in terms of runtime val-
idation is performed with and without reasoning, and (3) if
validation results depend on underlying semantics which dif-
fers between reasoning and validation. Using these findings,
we determine for the most common constraint languages
which constraint types they enable to express and give di-
rections for the further development of constraint languages.

Categories and Subject Descriptors
F.4.3 [Mathematical Logic and Formal Languages]:
[formal languages]; I.2.4 [Artificial Intelligence]: Knowl-
edge Representation Formalisms and Methods; I.2.11 [Artificial
Intelligence]: Distributed Artificial Intelligence

Keywords
RDF Validation, RDF Constraint Types, Data Quality, Rea-
soning, OWL, Linked Data, Semantic Web

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SEMANTiCS ’15, September 15 - 17, 2015, Vienna, Austria
c© 2015 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-3462-4/15/09. . . $15.00

DOI: http://dx.doi.org/10.1145/2814864.2814867

1. INTRODUCTION
Recently, RDF validation as a research field gained speed

due to common needs of data practitioners. A typical ex-
ample is the library domain that co-developed and adopted
Linked Data principles very early. For libraries, the com-
mon description of resources are key business and they have
a long tradition in developing and using interoperable data
formats. While they embrace the openness of Linked Data
and the data modeling principles provided by RDF, the data
is still mostly represented in XML and this is unlikely to
change soon. Among the reasons for the success of XML
is the possibility to formulate fine-grained constraints to
be met by the data and to validate the data according to
these constraints using powerful systems like DTDs, XML
Schemas, RELAX NG, or Schematron. A typical exam-
ple is the definition of a library record describing a book.
There are clear rules which information has to be available
to describe a book properly, but also how information like
an ISBN number is properly represented. Libraries seek to
make their own data reusable for general purposes, but also
to enrich and interlink their own data. Checking if third-
party data meets own requirements or validating existing
data according to new needs for a Linked Data application
are among common use cases for RDF validation.

In 2013, the W3C invited experts from industry, gov-
ernment, and academia to the RDF Validation Workshop,1

where first use cases for constraint formulation and RDF
data validation have been discussed. Two working groups
that follow up on this workshop have been established in
2014 to develop a language to express constraints on RDF
data: the W3C RDF Data Shapes Working Group2 and
the DCMI RDF Application Profiles Task Group.3 To for-
mulate constraints and to validate RDF data, several lan-
guages exist or are currently developed like Shape Expres-
sions (ShEx), Resource Shapes (ReSh), and Description Set
Profiles (DSP). The Web Ontology Language (OWL) in its
current version 2 is also used as a constraint language. With
its direct support of validation via SPARQL, the SPARQL
Inferencing Notation (SPIN) is very popular and certainly
plays an important role for future developments of constraint
languages. SPIN is particularly interesting as a means to

1http://www.w3.org/2012/12/RDF-val/
2http://www.w3.org/2014/rds/charter
3http://wiki.dublincore.org/index.php/
RDF-Application-Profiles

validate arbitrary constraint languages by mapping them to
SPARQL [4]. As there is no clear favorite and none of the
languages is able to meet all requirements raised by data
practitioners, further research and development is needed.

1.1 Motivation and Overview
Within the DCMI working group, we initiated a collabo-

ratively curated database of RDF validation requirements
which contains the findings of the working groups based
on various case studies provided by data institutions [3].
The database, which is publicly available and open for fur-
ther contributions,4 connects requirements to use cases, case
studies, and solutions. Based on our work in the DCMI
and in cooperation with the W3C working group, we pub-
lished by today 81 requirements to validate RDF data and
to formulate RDF constraints that are required by various
stakeholders for data applications. Each of these require-
ments corresponds to a constraint type from which concrete
constraints are instantiated to be checked on RDF data. Re-
quirements are uniquely identified in the database by an R
and a number. Minimum qualified cardinality restrictions,
e.g., is a constraint type which corresponds to the require-
ment R-75. We recently published a technical report [5]
(serving as appendix of this paper) in which we explain each
requirement/constraint type in detail and give examples for
each represented by different constraint languages. These
constraint types form the basis to investigate the role that
reasoning and different semantics play for RDF validation.

Validation and reasoning are closely related. Reasoning
is beneficial for RDF validation as (1) it may resolve con-
straint violations, (2) it may cause valuable violations, and
(3) it solves the redundancy problem. A major shortcoming
when validating RDF data is redundancy. Consider that a
publication must have a publication date which is a typi-
cal constraint. When defining books, conference proceedings,
and journal articles as sub-classes of publication, one would
require to assign the concerned constraint explicitly to each
sub-class, since each of them should have a publication date.
Reasoning is a promising solution as pre-validation step to
overcome this shortcoming. Reasoning in Semantic Web
refers to logical reasoning that makes implicitly available
knowledge explicitly available. When performing reasoning
one can infer that books must have a publication date from
the facts that books are publications and publications must
have a publications date. We remove redundancy by associ-
ating the constraint with the super-class publication.

Users should be enabled to select on which constraint
types to perform reasoning before data is validated and
which constraint types to use to ensure data accuracy and
completeness without reasoning. As reasoning is beneficial
when validating RDF data, we investigate the effect of rea-
soning to the validation process of each constraint type, i.e.,
we examine for each constraint type if reasoning may be per-
formed prior to validation to enhance data quality either by
resolving violations or by raising valuable violations (Section
2).

For each constraint type, we investigate how efficient in
terms of runtime validation is performed with and without
reasoning. By mapping to Description Logics (DL) we get
an idea of the performance of each constraint type in worst
case, since the combination of DL constructs needed to ex-
press a constraint type determines its computational com-

4Online available at: http://purl.org/net/rdf-validation

plexity (Section 2). For this reason, the appendix of this
paper contains mappings to DL to determine which DL con-
structs are needed to express each constraint type. Thus,
the knowledge representation formalism DL, with its well-
studied theoretical properties, provides the foundational ba-
sis for constraint types.

Validation and reasoning assume different semantics which
may lead to different validation results when applied to par-
ticular constraint types. Reasoning requires the open-world
assumption (OWA) with the non-unique name assumption
(nUNA), whereas validation is classically based on the closed-
world assumption (CWA) and the unique name assumption
(UNA). Therefore, we investigate for each constraint type if
validation results differ (1) if the CWA or the OWA and (2)
if the UNA or the nUNA is assumed, i.e., we examine for
each constraint type if the constraint type depends (1) on
the CWA and (2) on the UNA (Section 3).

Using these findings, we are able to determine which con-
straint types the five most common constraint languages en-
able to express (see Table 1) The evaluation is explained in
detail in the appendix of this paper [5].

Table 1: Expressivity of Constraint Languages

CT (81) R (46) R (35)
SPIN 100.0 (81) 100.0 (46) 100.0 (35)
OWL 2 DL 67.9 (55) 45.7 (21) 97.1 (34)
ShEx 29.6 (24) 26.1 (12) 34.3 (12)
ReSh 25.9 (21) 15.2 (7) 40.0 (14)
OWL 2 QL 24.7 (20) 19.6 (9) 31.4 (11)
DSP 17.3 (14) 13.0 (6) 22.9 (8)

We use CT to refer to the whole set of constraint types,
R to abbreviate the 35 constraint types for which reason-
ing may be performed before actually validating and R to
denote the 46 constraint types for which reasoning does not
improve data quality in any obvious sense. For OWL 2,
we differentiate between the sub-languages OWL 2 QL and
OWL 2 DL as they differ with regard to expressivity and
efficiency in performance. Table 1 shows in percentage val-
ues (and absolute numbers in brackets) how many CT , R,
and R constraint types are supported by listed constraint
languages. Although OWL 2 is the only language for which
reasoning features are already implemented, R constraint
types are also expressible by other languages.

Having information on the constraint type specific ex-
pressivity of constraint languages enables validation envi-
ronments to recommend the right language depending on
the users’ individual use cases. These use cases determine
which requirements have to be fulfilled and therefore which
constraint types have to be expressed to meet these use
cases. The finding that SPIN is the only language which
supports all reasoning constraint types underpins the im-
portance to implement reasoning capabilities by SPIN (or
plain SPARQL). The fact that all R and R constraint types
are representable by SPIN emphasizes the significant role
SPIN plays for the future development of constraint lan-
guages. Another important role may play OWL 2 DL with
which 2/3 of all, nearly 1/2 of the R, and almost all R
constraint types can be expressed. Even though some R
constraint types correspond to OWL 2 DL axioms, we can-
not use them directly to validate RDF data since OWL 2
reasoning and validation assume different semantics which
may lead to differences in results.

The contributions of this paper are: (1) We identified by
today 81 types of constraints that are required by various
stakeholders for data applications. (2) We work out the
role that reasoning plays in practical data validation, why
reasoning is beneficial for RDF validation, and how to over-
come the major shortcomings when validating RDF data by
performing reasoning prior to validation. (3) For each con-
straint type, we examine if reasoning may improve data qual-
ity, how efficient in terms of runtime validation is performed
with and without reasoning, and if validation results depend
on the CWA and on the UNA. (4) We determine which con-
straint types the most common constraint languages enable
to express and give directions for the further development
of constraint languages. (5) We provide open source val-
idation and reasoning implementations of constraint types
to be used to drive the further development of constraint
languages (Section 4).

2. REASONING
DL provides the foundational basis for the expressive lan-

guage OWL 2 which offers knowledge representation and
reasoning services. Validation is not the primary purpose of
its design which has lead to claims that OWL 2 cannot be
used for validation. In practice, however, OWL 2 is well-
spread and RDFS/OWL 2 constructs are widely used to tell
people and applications about how valid instances should
look like. In general, RDF documents follow the syntac-
tic structure and the semantics of RDFS/OWL 2 ontologies
which could therefore not only be used for reasoning but also
for validation.

In this section, we investigate the role that reasoning plays
in practical data validation and how to overcome the major
shortcomings when validating RDF data by performing rea-
soning prior to validation. As reasoning is beneficial for val-
idation, we investigate the effect of reasoning to the valida-
tion process for each constraint type. Reasoning is beneficial
for validation as (1) it may resolve constraint violations, (2)
it may cause useful violations, and (3) it solves the redun-
dancy problem. Consider the following DL knowledge base
K - a DL knowledge base is a collection of formal statements
which correspond to facts or what is known explicitly:

K � t
Book � Publication , Book � @ author.Person , Book � D title.J
Book(Huckleberry-Finn) , Book(Hamlet) ,
author(Huckleberry-Finn, Mark-Twain) ,
title(Huckleberry-Finn, The-Adventures-of-Huckleberry-Finn) ,
title(Huckleberry-Finn, Die-Abenteuer-des-Huckleberry-Finn) }

As we know that books can only have persons as authors
(Book � @ author.Person), Huckleberry-Finn is a book
(Book(Huckleberry-Finn)), and Mark Twain is its author
(author(Huckleberry-Finn, Mark-Twain)), we conclude that
Mark Twain is a person. As Mark Twain is not explicitly
defined to be a person, however, a violation is raised. Rea-
soning may resolve violations (1. benefit). If we apply rea-
soning before validating, the violation is resolved since the
implicit triple Person(Mark-Twain) is inferred and therefore
made explicitly available. Reasoning may cause additional
violations needed to enhance data quality when these ad-
ditional violations are resolved (2. benefit). As books are
publications (Book � Publication), constraints on publica-
tions are also validated for books which may result in further

valuable violations. As each publication must have a pub-
lisher, e.g., a book is a publication, Huckleberry-Finn is a
book, and Huckleberry-Finn does not have a publisher, a vi-
olation occurs. This violation would not have been raised
without reasoning before actually validating and thus data
quality would not be increased in case the violation is tack-
led. The major shortcoming of classical constraint languages
is redundancy. If a particular constraint should hold for mul-
tiple classes, it is required to assign the concerned constraint
explicitly to each class. The redundancy problem is solved
(3. benefit) by associating the constraint with the super-
class of these classes and applying OWL 2 reasoning (see
second paragraph in Section 1.1).

Validation environments should enable users to select which
constraint types to use for completing data by reasoning and
which ones should be considered as constraint types about
data accuracy and completeness which could be checked over
the data once completed using reasoning. As reasoning is
beneficial for validating RDF data, we investigate the effect
of reasoning to the validation process for each constraint
type, i.e., we examine for each constraint type if reason-
ing may be performed prior to validation to enhance data
quality either (1) by resolving violations or (2) by raising
valuable violations. We denote the whole set of constraint
types with CT which we divide into two disjoint sets:

1. R is the set of constraint types for which reasoning
may be performed prior to validation (especially when
not all the knowledge is explicit) to enhance data qual-
ity either by resolving violations or by raising valuable
violations. For R constraint types, validation is exe-
cuted by query answering with optional reasoning prior
to validation. 35 (43.2%) of the overall 81 constraint
types are R constraint types.

2. R denotes the complement of R, that is the set of
constraint types for which reasoning cannot be done or
for which reasoning does not improve data quality in
any obvious sense. For R constraint types, validation
is performed by query answering without reasoning.
46 (56.8%) of the overall 81 constraint types are R
constraint types.

If a journal volume has an editor relationship to a per-
son, then the journal volume must also have a creator rela-
tionship to the same person (editor � creator), i.e., editor
is a sub-property of creator. If we use sub-properties (R-
54/64) without reasoning and the data contains the triple
editor (A+Journal-Volume, A+Editor), then the triple cre-

ator (A+Journal-Volume, A+Editor) has to be stated explic-
itly. If this triple is not present in the data, a violation
occurs. If we use sub-properties with reasoning, however,
the required triple is inferred which resolves the violation.
Sub-properties is an R constraint type since reasoning may
be performed prior to validation to improve data quality
by resolving the violation. Literal pattern matching (R-44)
restricts literals to match given patterns:

1 ISBN a RDFS:Datatype ; owl:equivalentClass [a RDFS:Datatype ;
2 owl:onDatatype xsd:string ;
3 owl:withRestrictions ([xsd:pattern "^\d{9}[\d|X]$"])] .

The first OWL 2 axiom explicitly declares ISBN to be a
datatype. The second OWL 2 axiom defines ISBN as an
abbreviation for a datatype restriction on xsd:string. The

datatype ISBN can be used just like any other datatype such
as in the universal restriction Book � @ identifier.ISBN which
ensures that books can only have valid ISBN identifiers, i.e.,
strings that match a given regular expression. Literal pat-
tern matching is an R constraint type since reasoning cannot
be done.

For each constraint type we investigate how efficient in
terms of runtime validation is performed with and without
reasoning. By mapping to DL we get an idea of the perfor-
mance of each constraint type in worst case, since the combi-
nation of DL constructs needed to express a constraint type
determines its computational complexity.

2.1 Constraint Types with Reasoning
R is the set of constraint types for which reasoning may

be performed prior to validation to enhance data quality ei-
ther by resolving violations or by causing useful violations.
For R constraint types, different types of reasoning may be
performed which depends on the language used to formu-
late the constraint type. 11 of 35 R constraint types are
representable by the less expressive but better performing
OWL 2 QL. 23 R constraint types, in contrast, are not ex-
pressible by OWL 2 QL and therefore the more expressive
but less performing OWL 2 DL is used. Some of the R con-
straint types, however, are also representable by classical
constraint languages (e.g., 40% are representable by ReSh).
OWL 2 profiles are restricted versions of OWL 2 that offer
different trade-offs regarding expressivity vs. efficiency in
reasoning. We consider the two extreme OWL 2 profiles,
which are OWL 2 QL and OWL 2 DL, as OWL 2 QL is the
profile with the highest performance and OWL 2 DL is the
profile with the highest expressivity while still being a DL.
OWL 2 QL, based on the DL-Lite family of DL [2, 6], is an
OWL 2 profile which focuses on reasoning in the context of
query answering with very large size of instance data. OWL
2 DL was standardized as a DL-like formalism with high
expressivity, yet maintains decidability for main reasoning
tasks. As a result of its expressive power, OWL 2 DL al-
lows a large variety of sophisticated modeling capabilities for
many application domains. The drawback of its expressive
power results as a lack of computational efficiency in perfor-
mance. With regard to the two different types of reasoning
we divide R into two not disjoint sets of constraint types:
RQL � RDL (OWL 2 DL is more expressive than OWL 2
QL).

1. RQL is the set of R constraint types for which OWL 2
QL reasoning may be performed as they are express-
ible by OWL 2 QL. 11 of 35 R constraint types are
RQL constraint types.

2. RDL stands for the set of R constraint types for which
OWL 2 DL reasoning may be executed as OWL 2 QL
is not expressive enough to represent them [11]. 34 of
35 R constraint types are RDL constraint types.

2.1.1 OWL 2 QL Reasoning.
The property domain (R-25) constraint D author.J � Pub-

lication ensures that only publications can have author
relationships (in OWL 2 QL: author rdfs:domain Publica-

tion). Without reasoning, the triple author(Alices-Adventures-

In-Wonderland, Lewis-Carroll) leads to a violation if it is
not explicitly stated that Alices-Adventures-In-Wonderland
is a publication. With reasoning, on the contrary, the class

assignment rdf:type(Alices-Adventures-In-Wonderland, Pub-

lication) is inferred which prevents the violation to be
raised. Thus, reasoning improves data quality by resolving
the violation.

The existential quantification (R-86) Publication � D

publisher.Publisher restricts publications to have at least
one publisher:

1 Publication rdfs:subClassOf
2 [a owl:Restriction ;
3 owl:onProperty publisher ;
4 owl:someValuesFrom Publisher] .

If reasoning is executed on the triples publisher (A+Conference-

Proceedings, A+Publisher) and rdf:type (A+Publisher, Pub-

lisher), it is inferred that A+Conference-Proceedings is a
publication. Now, all constraints associated with publica-
tions are also validated for A+Conference-Proceedings - e.g.,
that publications must have at least one author. Without
reasoning, in contrast, the fact that A+Conference-Proceedings
is a publication is not explicit in the data which is the rea-
son why constraints on publications are not validated for
A+Conference-Proceedings. Hence, additional violations, which
may be useful to enhance data quality in case the violations
are taken into account, do not occur.

RDF validation with reasoning corresponds to performing
SPARQL queries. As OWL 2 profiles are based on the DL-
Lite family, OWL 2 QL is based on DL-LiteR, and query an-
swering in OWL 2 QL is performed in LogSpace (or rather
in AC0) [6], the same complexity class applies for validation
by queries with reasoning. As TBox reasoning in OWL 2
QL is performed in Ptime [6], complete query rewriting as
well as reasoning and subsequent querying (combined com-
plexity) is carried out in Ptime [2, 6].

2.1.2 OWL 2 DL Reasoning.
Universal quantifications (R-91) are used to build anony-

mous classes containing all individuals that are connected
by particular properties only to instances/literals of certain
classes/data ranges. Publications, e.g., can only have per-
sons as authors (Publication � @ author.Person):

1 Publication rdfs:subClassOf
2 [a owl:Restriction ;
3 owl:onProperty author ;
4 owl:allValuesFrom Person] .

When performing reasoning, the triples author(The-Lord-Of-

The-Rings, Tolkien) and rdf:type(The-Lord-Of-The-Rings,

Publication) let a reasoner infer that Tolkien is a person
which satisfies the universal quantification. In case reason-
ing is not executed, a violation is raised since it is not ex-
plicitly stated that Tolkien is a person. As a consequence,
constraints on persons are not checked for Tolkien which
prevents further validation.

With OWL 2 DL, the more expressive profile than OWL
2 QL, reasoning is executed in N2exptime [11] which is
a class of considerably higher complexity than Ptime, the
complexity class for OWL 2 QL reasoning. As we consider
ontological reasoning, complexity classes are assigned to sets
of constraint types according to well-established complexity
results in literature on reasoning of DL languages. There-
fore, the classification also includes complex logical interfer-
ences between TBox axioms.

2.2 Constraint Types without Reasoning
R is the set of constraint types for which reasoning can-

not be done or for which reasoning does not improve data
quality in any obvious sense. Context-specific exclusive or of
properties (R-11) is a R constraint type with which it can
be defined that an individual of a certain class can either
have property A or property B, but not both. Identifiers of
publications, e.g., can either be ISBNs (for books) or ISSNs
(for periodical publications), but it should not be possible
to assign both identifiers to a given publication:

K � t
Publication � (A [B) \ (A [B) ,
A � D isbn.xsd:string , B � D issn.xsd:string

This constraint can be represented by OWL 2 DL by
building an anonymous class for each exclusive property:

1 Publication owl:disjointUnionOf (A B) .
2 A rdfs:subClassOf [a owl:Restriction ;
3 owl:onProperty isbn ;
4 owl:someValuesFrom xsd:string] .
5 B rdfs:subClassOf [a owl:Restriction ;
6 owl:onProperty issn ;
7 owl:someValuesFrom xsd:string] .

Exactly the same constraint can be expressed by ShEx more
intuitively and concisely:

1 Publication { (isbn xsd:string | issn xsd:string) }

It is a common requirement to narrow down the value
space of properties by an exhaustive enumeration of valid
values (R-30/37: allowed values). Reasoning on this con-
straint type does not change validation results and there-
fore does not improve data quality. Books on the topics
Computer Science and Librarianship, e.g., should only have
ComputerScience and Librarianship as subjects. The corre-
sponding DL statement Book � @ subject.{Computer-Science,

Librarianship} is representable by DSP and OWL 2 DL:

1 [a dsp:DescriptionTemplate ;
2 dsp:resourceClass Book ;
3 dsp:statementTemplate [
4 dsp:property subject ;
5 dsp:nonLiteralConstraint [
6 dsp:valueURI ComputerScience, Librarianship]]] .
7

8 subject rdfs:range [owl:equivalentClass [a owl:Class;
9 owl:oneOf (ComputerScience Librarianship)]] .

RDF validation without reasoning corresponds to per-
forming SPARQL queries. It is known that performing SPARQL
queries is carried out in Pspace-Complete [14]. Table 2 gives
an overview over the complexity of validation with and with-
out reasoning. The higher the complexity class the worse
the performance. The order of the complexity classes is the
following [1]:

LogSpace � Ptime � Pspace-Complete � N2exptime

Table 2: Complexity of Validation According to Reasoning

Validation Type Complexity Class

R Pspace-Complete

RQL
Ptime

RDL
N2exptime

We do not consider OWL 2 Full due to its high worst
case complexity (undecidability) and as all (except of one)
R constraint types are already expressible either by OWL 2
QL or OWL 2 DL.

3. CWA AND UNA DEPENDENCY
RDF validation and reasoning assume different semantics.

Reasoning in OWL 2 is based on the open-world assumption
(OWA), i.e., a statement cannot be inferred to be false if
it cannot be proved to be true which fits its primary de-
sign purpose to represent knowledge on the WWW. As each
book must have a title (Book � D title.J) and Hamlet is
a book (Book(Hamlet)), Hamlet must have at least one ti-
tle as well. In an OWA setting, this constraint does not
cause a violation, even if there is no explicitly defined title,
since there must be a title for this book which we may not
know (K is consistent). As RDF validation has its origin
in the XML world many RDF validation scenarios require
the closed-world assumption (CWA), i.e., a statement is in-
ferred to be false if it cannot be proved to be true. Thus,
classical constraint languages are based on the CWA where
constraints need to be satisfied only by named individuals.
In the example, the CWA yields to a violation since there
is no explicitly defined title for the book Hamlet. OWL 2 is
based on the non-unique name assumption (nUNA) whereas
RDF validation requires that different names represent dif-
ferent objects (unique name assumption (UNA)). Although
DLs/OWL 2 do not assume UNA, they have the constructs
owl:sameAs and owl:differentFrom to state that two names
are the same or different. If validation would assume OWA
and nUNA, validation won’t be that restrictive and therefore
we won’t get the intended validation results. This ambiguity
in semantics is one of the main reasons why OWL 2 has not
been adopted as a standard constraint language for RDF
validation in the past.

RDF validation and reasoning assume different semantics
which may lead to different validation results when applied
to particular constraint types. Hence, we investigate for each
constraint type if validation results differ (1) if the CWA or
the OWA and (2) if the UNA or the nUNA is assumed, i.e.,
we examine for each constraint type (1) if the constraint
type depends on the CWA and (2) if the constraint type
depends on the UNA.

We classify constraint types according to the dependency
on the CWA and the UNA which leads to four sets of con-
straint types: (1) CWA denotes the set of constraint types
which are dependent on the CWA, i.e., the set of constraint
types for which it makes a difference in terms of valida-
tion results if the CWA or the OWA is assumed. Minimum
qualified cardinality restrictions (R-75) is a CWA constraint
type. Publications, e.g., must have at least one author (Pub-

lication � ¥1 author.Person). In a CWA setting, a pub-
lication without an explicitly stated author violates the con-
straint, whereas, with OWA semantics, a publication with-
out an explicitly stated author does not raise a violation as
the constraint entails that there must be an author which
we may not know. (2) CWA is the complement of CWA
and thus includes constraint types which are independent
on the CWA. Nothing can be a book and a journal arti-
cle at the same time (Book [JournalArticle � K). For
the constraint type disjoint classes (R-7), it does not make
any difference regarding validation results if the CWA or
the OWA is taken, as if there is a publication which is a

book and a journal article a violation is raised in both set-
tings, i.e., additional information does not change validation
results.

(3) UNA denotes the set of constraint types which are de-
pendent on the UNA. For functional properties (R-57/65),
it makes a difference with regard to validation results if the
UNA or the nUNA is assumed. As the property title is
functional (funct (title)), a book can have at most one
distinct title. UNA causes a clash if the book Huckleberry-
Finn has more than one title. For nUNA, however, reasoning
concludes that the title The-Adventures-of-Huckleberry-Finn
must be the same as the title Die-Abenteuer-des-Huckleberry-
Finn which resolves the violation. (4) UNA, the comple-
ment of UNA, denotes the set of constraint types which are
independent on the UNA. Literal value comparison (R-43)
is an example of a UNA constraint type which ensures that,
depending on property datatypes, two different literal values
have a specific ordering with respect to an operator like <,
<=, >, and >=. It has to be guaranteed, e.g., that birth
dates are before (<) death dates. If the birth and the death
date of Albert-Einstein is interchanged (birthDate(Albert-

Einstein, "1955-04-18"), deathDate(Albert-Einstein, "1879-

03-14")), a violation is thrown. The literal value compar-
ison constraint type is independent from the UNA as the
violation is not resolved in case there are further resources
(e.g., AlbertEinstein, Albert Einstein) which point to cor-
rect birth and death dates and which may be the same as
the violating resource when nUNA is assumed.

We evaluated for each constraint type if it is dependent
on the CWA and the UNA (for a detailed analysis we re-
fer to the appendix of this paper [5]). The result is that
we distinguish between 46 (56.8%) CWA and 35 (43.2%)
CWA and between 54 (66.6%) UNA and 27 (33.3%) UNA
constraint types. Hence, for the majority of the constraint
types it makes a difference in terms of validation results if
the CWA or the OWA and if the UNA or the nUNA is as-
sumed. For the CWA and the UNA constraint types, we
have to be careful in case we want to use them for reason-
ing and for validation as in both usage scenarios we assume
different semantics which may lead to different results.

4. IMPLEMENTATION
We use SPIN, a SPARQL-based way to formulate and

check constraints, as basis to develop a validation environ-
ment5 to validate RDF data according to constraints ex-
pressed by arbitrary constraint languages by mapping them
to SPIN6 [4]. The SPIN engine checks for each resource
if it satisfies all constraints, which are associated with its
classes, and generates a result RDF graph containing infor-
mation about all constraint violations. We provide imple-
mentations for all constraint types expressible by OWL 2
QL, OWL 2 DL, and DSP as well as for major constraint
types representable by ReSh and ShEx.6 By means of a
property ranges (R-28, R-35) constraint it can be restricted
that author relations can only point to persons (DL: J �

@ author.Person, OWL 2 DL: author rdfs:range Person.).

There is one SPIN construct template for each constraint
type, so for the constraint type property ranges:

5Online available at: http://purl.org/net/rdfval-demo,
source code available at: https://github.com/boschthomas/
rdf-validator
6SPIN mappings online available at: https://github.com/
boschthomas/rdf-validation/tree/master/SPIN

1 owl2spin:PropertyRanges a spin:ConstructTemplate ;
2 spin:body [a sp:Construct ; sp:text """
3 CONSTRUCT {
4 _:cv a spin:ConstraintViolation [...] . }
5 WHERE {
6 ?OP rdfs:range ?C . ?x ?OP ?this . ?this a owl:Thing .
7 FILTER NOT EXISTS { ?this a ?C } . } """ ;] .

A SPIN construct template contains a SPARQL CON-
STRUCT query generating constraint violation triples which
indicate the subject, the properties, and the constraint caus-
ing the violations and the reason why violations have been
raised. Violation triples, which are associated with a cer-
tain level of severity (informational, warning, error), may
also give some guidance how to fix them. A SPIN con-
struct template creates violation triples if all triple pat-
terns within the SPARQL WHERE clause match. If Doyle,
the author of the book Sherlock-Holmes (author(Sherlock-

Holmes, Doyle)), e.g., is not explicitly declared to be a per-
son, all triple patterns within the SPARQL WHERE clause
match and the SPIN construct template generates a viola-
tion triple.

Property ranges is an R constraint type, i.e., a constraint
type for which reasoning may be performed prior to valida-
tion to enhance data quality. Therefore, validation environ-
ments should enable users to decide if reasoning on property
ranges constraints should be executed before validation. If
a user decides to use reasoning, the triple rdf:type(Doyle,

Person), whose absence caused the violation, is inferred
before data is validated which resolves the violation. Vali-
dation environments should enable users (1) to select indi-
vidual resources for which reasoning should be performed on
R constraints before they are validated, (2) to select R con-
straint types for which reasoning should be executed, and
(3) to globally determine if for all R constraint types rea-
soning should be done. All resources, for which reasoning
should be performed prior to validation, are automatically
assigned to the class Reasoning during a pre-reasoning step.
There is one SPIN rule for each R constraint type, so for
property ranges:

1 owl2spin:Reasoning spin:rule [a sp:Construct ; sp:text """
2 CONSTRUCT { ?this a ?C . }
3 WHERE { ?OP rdfs:range ?C . ?x ?OP ?this . ?this a owl:Thing .
4 FILTER NOT EXISTS { ?this a ?C } . } """ ;] .

The SPIN rule is executed for each resource of the class
Reasoning. A SPIN rule contains a SPARQL CONSTRUCT
query which generates triples if all triple patterns within the
SPARQL WHERE clause match. In case Doyle is not de-
fined to be a person, all triple patterns match and the triple
rdf:type(Doyle, Person) is created. As a consequence, the
violation on Doyle is not raised. We implemented reasoning
capabilities for all R constraint types for which OWL 2 QL
and OWL 2 DL reasoning may be performed.6

5. RELATED WORK
Tao [17] suggested an OWL 2 DL extension to support

integrity constraints which enables to use OWL 2 as a con-
straint language for validation under the CWA by conjunc-
tive query answering. Tao also provides a solution to ex-
plain and repair integrity constraint violations. Siren and
Tao [16] proposed an alternative semantics for OWL 2 us-
ing the CWA so that it could be used to validate integrity

constraints. They examined integrity constraint semantics
proposed in the deductive databases literature and adopted
them for OWL 2 by reducing the validation of integrity con-
straints to SPARQL query answering by means of reason-
ers. Although the alternative semantics for OWL 2 is im-
plemented in the Stardog database,7 it has never been sub-
mitted to a standards organization such as the W3C.

In DL, reasoning tasks like query answering or detection of
inconsistencies require the consideration of knowledge that
is not only defined explicitly but also implicitly. To do so
there are two different ways called forward- and backward-
chaining. The first method implies a materialized knowledge
base, where the original knowledge base is extended by all
assertions that can be inferred. State-of-the-art DL or OWL
reasoners following this approach are FaCT++ [18], Pellet
[15], RacerPro [8], or HermiT [9].

On the second approach, the original knowledge base is
kept in its original state. Before queries are evaluated against
the knowledge base, queries are rewritten such that the
rewritings also consider the implicit knowledge in the re-
sult set. Approaches following this way are PerfectRef [6]
or TreeWitness [10], which are implemented in the –ontop–
framework8 for ontology-based data access. The first solu-
tion is applied on local knowledge bases whereas the second
is more appropriate for federative environments like in [12,
13].

6. CONCLUSION AND FUTURE WORK
Based on our work in the DCMI and in cooperation with

the W3C working group, we published by today 81 con-
straint types [5] which form the basis to investigate the role
that reasoning and different semantics play for RDF valida-
tion.

The conclusions of this paper clearly show that valida-
tion results differ depending on whether validation is based
on the closed-world assumption (CWA) or the open-world
assumption (OWA) and whether the unique name assump-
tion (UNA) or the non-unique name assumption (nUNA)
is underlying. Equally, using or not using reasoning has
serious impact on which constraints are considered to be vi-
olated or fulfilled. Obviously, these findings are not new and
should be clear to everyone working with RDF and Seman-
tic Web technologies. According to our experience, however,
the topic data validation is yet far too often reduced to the
selection of suitable constraint languages which may be re-
lated to the obvious but yet inaccurate comparison of RDF
with XML as basis technology to represent data. With this
paper, we want to make clear that it depends on more than
just the constraint language when validating RDF data and
when developing appropriate systems. Therefore, in order
to realize interoperable solutions for data validation, three
components are needed: (1) An adequate constraint lan-
guage is required that allows to represent the desired con-
straints. (2) The underlying semantics have to be specified,
be it open or closed world, particularly if constraints are used
that depend on the choice of the semantics. (3) It must be
determined if reasoning should be involved in the validation
process or not. Necessary reasoning steps have to be prede-
fined to allow the correct interpretation of the constraints,
e.g., when constraints are defined on super-classes to avoid

7http://stardog.com/
8http://ontop.inf.unibz.it

redundancy.
We investigated the role that reasoning plays in practi-

cal data validation and how to overcome the major short-
comings when validating RDF data by performing reasoning
prior to validation. Reasoning is beneficial for validation as
(1) it may resolve violations, (2) it may cause valuable vi-
olations, and (3) it solves the redundancy problem. Users
should be enabled to select on which constraint types reason-
ing should be performed before data is validated and which
constraint types to use in order to ensure data accuracy and
completeness without reasoning. Therefore, we investigated
for each constraint type if reasoning may be performed prior
to validation to enhance data quality either by resolving vi-
olations or by raising valuable violations. For 43.2% of the
constraint types, reasoning may be performed before vali-
dating to improve data quality. For 56.8% of the constraint
types, however, reasoning cannot be done or does not im-
prove data quality in any obvious sense (Section 2).

For each constraint type, we examined how efficient in
terms of runtime validation is performed with and without
reasoning in worst case. By mapping constraint types to
Description Logics, we were able to determine their com-
putational complexity (Section 2). Validation and reason-
ing assume different semantics which may lead to differ-
ent validation results when applied to particular constraint
types. OWL 2 reasoning requires the OWA with the nUNA,
whereas validation is based on the CWA and the UNA.
Therefore, we investigated for each constraint type (1) if
it depends on the CWA and (2) if it depends on the UNA.
For the majority of the constraint types, it makes a differ-
ence in terms of validation results if the CWA or the OWA
and if the UNA or the nUNA is assumed (Section 3).

Using these findings, we determined which constraint types
the five most common constraint languages enable to express
[5]. By revealing which constraint types are not covered by
existing languages, we give directions and emphasize the sig-
nificant role SPIN and OWL 2 DL play for the future devel-
opment of constraint languages (Section 1.1). SPARQL is
generally seen as the method of choice to validate data ac-
cording to certain constraints [7], although it is not ideal for
their formulation. In contrast, constraint languages, which
may be placed on top of SPARQL, are comparatively easy
to understand and constraints can be formulated more con-
cisely. We use SPIN, a SPARQL-based way to formulate
and check constraints, as basis to develop a validation envi-
ronment5 to validate RDF data according to constraints ex-
pressed by arbitrary constraint languages by mapping them
to SPIN6 [4]. We provide open source validation and reason-
ing implementations of constraint types to be used to drive
the further development of constraint languages (Section 4).

As part of future work we extend the RDF Validator5

to provide a list of languages for which the expressivity is
sufficient to represent constraint types depending on users’
individual needs. The validation environment may also rec-
ommend one of these languages covering the most of the
required constraint types with the lowest for the user ac-
ceptable complexity class. As reasoning may cause high
complexity, the validator may show which constraint types
from the users’ selections cause the higher complexity class
and may provide solutions how to get to the next lower com-
plexity class. It would be charming to have an estimation
which group of constraint types demands which complexity
class. This is not an easy question, however, since complex-

ity results are language specific and operational semantics is
involved as well. Therefore, it is hard to maintain a general
complexity result for a constraint type independent of the
language chosen. Yet, providing an estimation for particular
cases can still be straightforward.

7. REFERENCES
[1] S. Arora and B. Barak. Computational Complexity: A

Modern Approach. Cambridge University Press, New
York, NY, USA, 1st edition, 2009.

[2] A. Artale, D. Calvanese, R. Kontchakov, and
M. Zakharyaschev. The DL-Lite Family and Relations.
Journal of Artificial Intelligence Research, 36(1):1–69,
Sept. 2009.

[3] T. Bosch and K. Eckert. Requirements on RDF
Constraint Formulation and Validation. In Proceedings
of the DCMI International Conference on Dublin Core
and Metadata Applications, Austin, Texas, USA, 2014.

[4] T. Bosch and K. Eckert. Towards Description Set
Profiles for RDF using SPARQL as Intermediate
Language. In Proceedings of the DCMI International
Conference on Dublin Core and Metadata Applications
(DC 2014), Austin, Texas, USA, 2014.

[5] T. Bosch, A. Nolle, E. Acar, and K. Eckert. RDF
Validation Requirements - Evaluation and Logical
Underpinning. Computing Research Repository
(CoRR), abs/1501.03933, 2015.

[6] D. Calvanese, G. Giacomo, D. Lembo, M. Lenzerini,
and R. Rosati. Tractable Reasoning and Efficient
Query Answering in Description Logics: The DL-Lite
Family. Journal of Automated Reasoning,
39(3):385–429, Oct. 2007.

[7] C. Fürber and M. Hepp. Using SPARQL and SPIN for
Data Quality Management on the Semantic Web. In
W. Abramowicz and R. Tolksdorf, editors, Business
Information Systems, volume 47 of Lecture Notes in
Business Information Processing, pages 35–46.
Springer Berlin Heidelberg, 2010.

[8] V. Haarslev and R. Müller. RACER System
Description. In Automated Reasoning, pages 701–705.
Springer, 2001.

[9] I. Horrocks, B. Motik, and Z. Wang. The HermiT
OWL Reasoner. In Proceedings of the 1st International
Workshop on OWL Reasoner Evaluation (ORE 2012),
Manchester, UK, 2012.

[10] R. Kontchakov, C. Lutz, D. Toman, F. Wolter, and
M. Zakharyaschev. The Combined Approach to
Ontology-Based Data Access. In Proceedings of the
22th International Joint Conference on Artificial
Intelligence, volume 3, pages 2656–2661. AAAI Press,
2011.

[11] B. Motik, B. C. Grau, I. Horrocks, Z. Wu, A. Fokoue,
and C. Lutz. OWL 2 Web Ontology Language:
Profiles. W3C Recommendation, W3C, 2012.

[12] A. Nolle, C. Meilicke, H. Stuckenschmidt, and
G. Nemirovski. Efficient Federated Debugging of
Lightweight Ontologies. In Web Reasoning and Rule
Systems, pages 206–215. Springer International
Publishing, 2014.

[13] A. Nolle and G. Nemirovski. ELITE: An
Entailment-Based Federated Query Engine for
Complete and Transparent Semantic Data Integration.

In Proceedings of the 26th International Workshop on
Description Logics, pages 854–867. CEUR Electronic
Workshop Proceedings, 2013.

[14] J. Pérez, M. Arenas, and C. Gutierrez. Semantics and
Complexity of SPARQL. ACM Transactions on
Database Systems (TODS), 34(3):16:1–16:45, 2009.

[15] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and
Y. Katz. Pellet: A Practical OWL-DL Reasoner. Web
Semantics: Science, Services and Agents on the World
Wide Web, 5(2):51–53, 2007.

[16] E. Sirin and J. Tao. Towards Integrity Constraints in
OWL. In Proceedings of the Workshop on OWL:
Experiences and Directions (OWLED 2009), 2009.

[17] J. Tao. Integrity Constraints for the Semantic Web:
An OWL 2 DL Extension. PhD thesis, Rensselaer
Polytechnic Institute, 2012.

[18] D. Tsarkov and I. Horrocks. FaCT++ Description
Logic Reasoner: System Description. In Automated
Reasoning, pages 292–297. Springer, 2006.

