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Abstract

In the context of the DCMI RDF Application Profile task group and the W3C Data
Shapes Working Group solutions for the proper formulation of constraints and validation
of RDF data on these constraints are being developed. Several approaches and constraint
languages exist but there is no clear favorite and none of the languages is able to meet all re-
quirements raised by data practitioners. To support the work, a comprehensive, community-
driven database has been created where case studies, use cases, requirements and solutions
are collected. Based on this database, we have hitherto published 81 types of constraints
that are required by various stakeholders for data applications. We are using this collection
of constraint types to gain a better understanding of the expressiveness of existing solutions
and gaps that still need to be filled. Regarding the implementation of constraint languages,
we have already proposed to use high-level languages to describe the constraints, but map
them to SPARQL queries in order to execute the actual validation; we have demonstrated
this approach for the Web Ontology Language in its current version 2 and Description Set
Profiles. In this paper, we generalize from the experience of implementing OWL 2 and DSP
by introducing an abstraction layer that is able to describe constraints of any constraint
type in a way that mappings from high-level constraint languages to this intermediate rep-
resentation can be created more or less straight-forwardly. We demonstrate that using
another layer on top of SPARQL helps to implement validation consistently accross con-
straint languages, simplifies the actual implementation of new languages, and supports the
transformation of semantically equivalent constraints across constraint languages.

Keywords: RDF validation; RDF constraints; RDF constraint types, RDF validation
requirements; Linked Data; Semantic Web

1 Introduction

The proper validation of RDF data according to constraints is a common requirement of
data practitioners. Among the reasons for the success of XML is the possibility to formulate
fine-grained constraints to be met by the data and to validate the data according to these
constraints using powerful systems like DTD, XML Schema, RELAX NG, or Schematron.
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In 2013, the W3C organized the RDF Validation Workshop1 where experts from industry,
government, and academia discussed first RDF validation use cases. In 2014, two working
groups on RDF validation were established: the W3C RDF Data Shapes Working Group2

and the DCMI RDF Application Profiles Task Group.3 We collected the findings of these
working groups and initiated a database of RDF validation requirements4 with the intention
to collaboratively collect case studies, use cases, requirements, and solutions in a compre-
hensive and structured way (Bosch & Eckert, 2014a). Based on our work in the DCMI and
in cooperation with the W3C working group, we identified by today 81 constraint types,
where each type corresponds to a specific requirement in the database. In a technical re-
port, we explain each constraint type in detail and give examples for each represented by
different constraint languages (Bosch, Nolle, Acar, & Eckert, 2015).

Various constraint languages exist or are being developed that support more or less of
these constraint types. For our work, we focus on the following four as the ones that are most
popular among data practitioners, often mentioned on mailing lists and/or being candidates
or prototypes for the upcoming W3C recommendation: Description Set Profiles (DSP),5

Resource Shapes (ReSh),6 Shape Expressions (ShEx),7 and the Web Ontology Language
(OWL).8 Despite the fact that OWL is arguably not a constraint language, it is widely
used in practice as such under the closed-world and unique name assumptions.

With its direct support of validation via SPARQL, the SPARQL Inferencing Notation
(SPIN)9 is also very popular to formulate and check constraints (Fürber & Hepp, 2010). We
consider SPIN as a low-level language in contrast to the other constraint languages where
specific language constructs exist to define constraints in a declarative and in comparison
more intuitive way – although SPARQL aficionados might object particularly to the latter
point.

The power of SPIN is shown in Table 1, where we list the fraction (and absolute numbers
in brackets) of how many constraint types each of these languages supports (Bosch et al.,
2015). We further see that OWL 2 is currently the most expressive high-level constraint
language, at least according to the pure number of constraint types supported. This does
not preclude that other constraint languages are better suited for certain applications, either
because they support some types that are not supported by OWL or because the constraint
representation is more appealing to the data practitioners – producers as well as consumers
who again might have different needs and preferences.

TABLE 1: Constraint Type Specific Expressivity of Constraint Languages
DSP ReSh ShEx OWL 2 SPIN

17.3 (14) 25.9 (21) 29.6 (24) 67.9 (55) 100.0 (81)

We formerly demonstrated that a high-level constraint language like OWL 2 and DSP can
be implemented by mapping the language to SPIN using SPARQL CONSTRUCT queries
(Bosch & Eckert, 2014b). We provide a validation environment where own mappings from

1http://www.w3.org/2012/12/rdf-val/
2http://www.w3.org/2014/rds/charter
3http://wiki.dublincore.org/index.php/RDF-Application-Profiles
4Online available at: http://purl.org/net/rdf-validation
5http://dublincore.org/documents/2008/03/31/dc-dsp/
6http://www.w3.org/Submission/2014/SUBM-shapes-20140211/
7http://www.w3.org/Submission/2014/SUBM-shex-primer-20140602/
8http://www.w3.org/TR/owl2-syntax/
9http://spinrdf.org/
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arbitrary constraint languages can be provided and tested.10 The only limitations are that
the constraints have to be expressed in RDF and that the constraint language is expressible
in SPARQL.

The constraint type minimum qualified cardinality restrictions which corresponds to the
requirement R-75 11 can be instantiated to formulate the constraint that publications must
have at least one author which must be a person. This constraint can be expressed as
follows using different constraint languages:

1 OWL 2: Publication a owl:Restriction ;

2 owl:minQualifiedCardinality 1 ;

3 owl:onProperty author ;

4 owl:onClass Person .

5

6 ShEx: Publication { author @Person{1, } }
7

8 ReSh: Publication a rs:ResourceShape ; rs:property [

9 rs:propertyDefinition author ;

10 rs:valueShape Person ;

11 rs:occurs rs:One-or-many ; ] .

12

13 DSP: [ dsp:resourceClass Publication ; dsp:statementTemplate [

14 dsp:minOccur 1 ;

15 dsp:property author ;

16 dsp:nonLiteralConstraint [ dsp:valueClass Person ] ] ] .

17

18 SPIN: CONSTRUCT { [ a spin:ConstraintViolation ... . ] } WHERE {
19 ?this

20 a ?C1 ;

21 ?p ?o .

22 BIND ( qualifiedCardinality ( ?this, ?p, ?C2 ) AS ?c ) .

23 BIND( STRDT ( STR ( ?c ), xsd:nonNegativeInteger ) AS ?cardinality ) .

24 FILTER ( ?cardinality < 1 ) .

25 FILTER ( ?C1 = Publication ) .

26 FILTER ( ?C2 = Person ) .

27 FILTER ( ?p = author ) . }
28

29 SPIN function qualifiedCardinality:

30 SELECT ( COUNT ( ?arg1 ) AS ?c ) WHERE { ?arg1 ?arg2 ?o . ?o a ?arg3 . }

Note that the SPIN representation of the constraint is not a SPIN mapping to implement
the constraint, but a direct expression of the constraint using a SPARQL CONSTRUCT
query that creates a spin:ConstraintViolation if the constraint is violated.

It can be seen that the higher-level constraint languages are comparatively similar, there
seems to be a pattern, a common way to express this type of constraint. Therefore, a
mapping from a high-level language to another high-level language would be considerably
easier. Unfortunately, there is not (yet) a high-level language that supports all constraint
types.

The creation of mappings of constraint languages to SPIN to implement their validation
is in many cases not straight-forward and requires profound knowledge of SPARQL, as the
following example demonstrates. In this example, the validation of the minimum qualified
cardinality restrictions constraint type is implemented for DSP:

1 CONSTRUCT {
2 _:constraintViolation

10Online available at: http://purl.org/net/rdfval-demo, source code online available at: https://github
.com/boschthomas/rdf-validator.

11Requirements are identified in the database by an R and a number, additionally an alphanumeric identifier
is provided, in this case R-75-MINIMUM-QUALIFIED-CARDINALITY-ON-PROPERTIES. Online at:
http://lelystad.informatik.uni-mannheim.de/rdf-validation/?q=node/82
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3 a spin:ConstraintViolation ;

4 rdfs:label ?violationMessage ;

5 spin:violationRoot ?this ;

6 spin:violationPath ?property ;

7 spin:violationSource ?violationSource . }
8 WHERE {
9 ?this a ?resourceClass .

10 ?descriptionTemplate

11 dsp:resourceClass ?resourceClass ;

12 dsp:statementTemplate ?statementTemplate .

13 ?statementTemplate

14 dsp:minOccur ?minimum ;

15 dsp:property ?property ;

16 dsp:nonLiteralConstraint ?nonLiteralConstraint .

17 ?nonLiteralConstraint dsp:valueClass ?valueClass .

18 BIND ( qualifiedCardinality ( ?this, ?property, ?valueClass ) AS ?cardinality ) .

19 FILTER ( ?cardinality < ?minimum ) . }

The SPIN mappings for OWL 2 and DSP are rather complicated and can be found in
the mappings provided by us.12

In this paper, we build on the experience gained from mapping several constraint lan-
guages to SPIN and from the analysis of the identified constraint types to create an inter-
mediate layer, a framework that is able to describe the mechanics of all constraint types
and that can be used to map high-level languages more easily.

2 Motivation

Even with an upcoming W3C recommendation, it can be expected that several constraint
languages will be used in practice in future – consider the situation in the XML world, where
a standardized schema language was available from the beginning and yet additional ways
to formulate and check constraints have been created. Therefore, semantically equivalent
constraints represented in different languages will exist. This raises two questions:

1. How can we ensure that two semantically equivalent constraints are actually validated
consistently?

2. How can we support the transformation of semantically equivalent constraints from
one constraint language to another?

Consistent implementation. Even though SPIN provides a convenient way to represent
constraints and to validate data according to these constraints, the implementation of a
high-level constraint language still requires a tedious mapping to SPIN with a certain degree
of freedom as to how a constraint violation is actually represented and how exactly the
violation of the constraint is checked. Our framework therefore provides a common ground
that is solely based on the abstract definitions of the constraint types, as identified in our
database. By providing a SPIN mapping for each constraint type,13 it is ensured that the
details of the SPIN implementation are consistent irrespective of the constraint language
and that the validation leads always to exactly the same results.

12OWL 2 mapping online available at: https://github.com/boschthomas/rdf-validation/

blob/b6a275fb5d71a92ae33d3b6aadd5f447351214b7/SPIN/OWL2 SPIN-Mapping.ttl; DSP
mapping online available at: https://github.com/boschthomas/rdf-validation/blob/

b6a275fb5d71a92ae33d3b6aadd5f447351214b7/SPIN/DSP SPIN-Mapping.ttl#L4665
13RDF-CV to SPIN online available at: https://github.com/boschthomas/RDF-CV-2-SPIN
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Constraint transformation. Consistent implementations of constraint languages provide
some advantage, but it could be argued that they are not important enough to justify
the additional layer. The situation, however, is different when transformations from one
constraint language to another are desired, i.e., to transform a specific constraint scα of any
constraint type expressed by language α into a semantically equivalent specific constraint
scβ of the same constraint type represented by any other language β. By defining mappings
between equivalent specific constraints and the corresponding generic constraint (gc) we
are able to convert them automatically:

gc = mα(scα)

scβ = m′β(gc)

Thereby, we do not need to define mappings for each constraint type and each possible
combination of constraint languages. Assuming that we are able to express a single con-
straint type like minimum qualified cardinality restrictions within 10 languages, n·n−1 = 90
mappings would be needed – as mappings generally are not invertible. With an intermedi-
ate generic representation of constraints, on the other side, we only need to define for each
constraint type 2n = 20 mappings – where 10 mappings should already exist if we have an
implementation in our framework. To summarize, if language developers are willing to pro-
vide two mappings – forward (m) and backward (m′) – to our framework for each supported
constraint type, we not only would get the consistent implementation of all languages, it
would also be possible to transform semantically equivalent constraints into all constraint
languages.

3 Towards a Framework

When we fully implemented OWL 2 and DSP and to some extend other constraint lan-
guages using SPARQL as intermediate language (Bosch & Eckert, 2014b), we found that
many mappings actually resemble each other; particularly the mappings of the same con-
straint type in different languages, but also the mappings of different constraint types,
though the latter only on a very superficial, structural level. The basic idea of our frame-
work is very simple: we aim at reducing the representation of constraints to the absolute
minimum that has to be provided in a mapping to SPIN to implement the validation for
constraint types. Consider again our example from above for the SPIN representation of a
constraint of the type minimum qualified cardinality restrictions:

1 SPIN: CONSTRUCT { [ a spin:ConstraintViolation ... . ] } WHERE {
2 ?this

3 a ?C1 ;

4 ?p ?o .

5 BIND ( qualifiedCardinality ( ?this, ?p, ?C2 ) AS ?c ) .

6 BIND( STRDT ( STR ( ?c ), xsd:nonNegativeInteger ) AS ?cardinality ) .

7 FILTER ( ?cardinality < 1 ) .

8 FILTER ( ?C1 = Publication ) .

9 FILTER ( ?C2 = Person ) .

10 FILTER ( ?p = author ) . }
11

12 SPIN function qualifiedCardinality:

13 SELECT ( COUNT ( ?arg1 ) AS ?c ) WHERE { ?arg1 ?arg2 ?o . ?o a ?arg3 . }

However this SPIN code looks like, all we have to provide to make it work is the desired
minimum cardinality (?cardinality), the property to be constrained (?p), the class whose
individuals must hold for the constraint (?C1), and the class for which the property should
be constrained (?C2). All other variables are bound internally. So we could reduce the
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effort of the mapping by simply providing these four values, which are readily available in
all representations of this constraint type:

1 OWL 2: Publication a owl:Restriction ;

2 owl:minQualifiedCardinality 1 ;

3 owl:onProperty author ;

4 owl:onClass Person .

5

6 ShEx: Publication { author @Person{1, } }
7

8 ReSh: Publication a rs:ResourceShape ; rs:property [

9 rs:propertyDefinition author ;

10 rs:valueShape Person ;

11 rs:occurs rs:One-or-many ; ] .

12

13 DSP: [ dsp:resourceClass Publication ; dsp:statementTemplate [

14 dsp:minOccur 1 ;

15 dsp:property author ;

16 dsp:nonLiteralConstraint [ dsp:valueClass Person ] ] ] .

In further investigation of all kind of constraints and particularly the list of constraint
types, we aimed at identifying the building blocks of such constraints to come up with a
concise representation of every constraint type.

3.1 Building Blocks

At the core, we use a very simple conceptual model for constraints (see Figure 1), using
a small lightweight vocabulary called RDF Constraints Vocabulary (RDF-CV).14

FIG. 1: RDF Constraints Vocabulary (RDF-CV) Conceptual Model

RDF constraints are either simple constraints or complex constraints. Simple constraints
denotes the set of atomic constraints with respect to a single constraining element – we
will come to the notion of a constraining element in a second. In contrast, there are
complex constraints, i.e., the set of constraints which are created out of simple and/or other
complex constraints. This structure therefore allows to build complex constraints out of
other (simple or complex) constraints. Regarding our database of constraint types, 60% of
the constraint types are used to instantiate simple constraints and 26% complex constraints.
Constraints of additional 14% of the constraint types are complex constraints as well which
can be simplified and therefore formulated as simple constraints if additional constraining

14Formal specification and HTML documentation online available at: https://github.com/boschthomas/

RDF-Constraints-Vocabulary
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elements are introduced to cover them.

The properties describing a simple constraint are very structural, i.e., the properties de-
scribe the structure of constraints. The central property is the constraining element which
refers to one of 103 constraining elements described in our technical report (Bosch et al.,
2015). Constraining elements are for example taken from Description Logics, another con-
crete example would be the SPARQL function REGEX where a regular expression is checked
against some property value. In most cases, constraining elements directly correspond to
a constraint type, sometimes (as for REGEX) they are shared by several constraint types.
Complex constraints again need several constraining elements to be expressed.

Irrespective of and additional to the constraining element, there are properties to describe
the actual constraint, they can also be seen as parameters for the constraining element.
The context class limits the constraint to individuals of a specific class. Depending on the
constraining elements, a list of classes can be provided, for example to determine the valid
classes for a value or to define a class intersection to be used in a constraint. leftProperties
and rightProperties are lists usually containing properties the constraint is applied to. A
typical example for a constraint type with a right hand side list of properties would be literal
value comparison (R-43), where constraints like birthDate < deathDate can be expressed.
Finally, the constraining value contains a literal value to be checked against; for instance
in the case of the REGEX element, it contains the regular expression to be evaluated.

This simple structure plus the constraining elements form the building blocks of our
proposed framework. In the technical report (Bosch et al., 2015), we list for every constraint
type its representation in our framework which not only shows that constraints of any
constraint type can indeed be described generically in this way, but which also forms the
starting point for any mappings using this framework.

Formal approach and semantics. A cornerstone of the framework is the generic repre-
sentation of a constraint, which can often be done using Description Logics. For exam-
ple the minimum qualified cardinality restriction can be expressed as Publication v ≥1
author.Person. This way, the knowledge representation formalism Description Logics (DL)
(Krötzsch, Simanč́ık, & Horrocks, 2012; Baader, Calvanese, McGuinness, Nardi, & Patel-
Schneider, 2003; Baader & Nutt, 2003) with its well-studied theoretical properties provides
the foundational basis for the framework.

It turned out that 64% of the 81 constraint types are actually expressible in DL. Only
for the remaining 36%, other means, i.e., other constraining elements, had to be identified.
This is not surprising if we consider that OWL is based on DL. When we talk about using
DL to represent constraints, we have to establish once more that the semantics of OWL and
DL differ from the semantics of constraint languages regarding the open world assumption
(OWA) and the non-unique name assumption (nUNA). Both are usually assumed when
dealing with OWL or DL, whereas validation usually assumes a closed world (CWA) and
unique naming (UNA), i.e., if a desired property is missing, this leads to a violation and if
two resources are named differently, they are assumed to be different resources.

We won’t get into details about these assumptions here, but it has to be noted that
the applied semantics have to be defined if validation is performed, as the results would
differ under different semantics. Precisely, we found that for 56.8% of the constraint types
validation results differ if the CWA or the OWA is assumed and for 66.6% of the constraint
types validation results are different in case the UNA or the nUNA is assumed (Bosch et
al., 2015).
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For the purpose of a consistent implementation and transformation of constraints, con-
straints are considered semantically equivalent if they detect the same set of violations
regardless of RDF data, which means whenever the constraints are applied to any RDF
data they point out the same violations.

3.2 Simple Constraints

In this and the following section, we provide examples for the representation of constraint
types within the framework.

The minimum qualified cardinality restriction (R-75) Publication v ≥1 author.Person,

which restricts publications to have at least one author which must be a person, is an exam-
ple of a simple constraint on author which holds for all individuals of the class Publication.
Table 2 displays how the simple constraint is generically represented using the RDF-CV.

TABLE 2: Minimum Qualified Cardinality Restriction as Property Constraint
context class left property list right p. list classes constraining element c. value
Publication author - Person ≥ 1

The constraining element is an intuitive term which indicates the actual type of con-
straint. For the majority of the constraint types, there is exactly one constraining element,
for instance property domain (R-25, R-26) restricts domains of properties and there is only
one constraining element with exactly the same identifier property domain. Some constraint
types, however, need several constraining elements to be expressed, for instance language tag
cardinality (R-48, R-49) is used to restrict data properties to have a minimum, maximum,
or exact number of relationships to literals with selected language tags. Thus, three con-
straining elements are needed to express each possible constraint of that constraint type.
This example also illustrates that the granularity of the constraint types varies and cer-
tainly often is debatable. Keep in mind that they correspond to requirements as identified
by the working groups. The constraining elements, as in this example, are closer to atomic
elements of constraints.

If constraint types are expressible in DL, associated constraining elements are formally
based on DL constructs like concept and role constructors (v, ≡, u, t, ¬, ∃, ∀, ≥, ≤),
equality (=), and inequality (6=). In case constraint types cannot be expressed in DL such as
data property facets (R-46) or literal pattern matching (R-44), we reuse widely known terms
from SPARQL (e.g., REGEX) or XML Schema constraining facets (e.g., xsd:minInclusive)
as constraining elements. We provide a complete list of all 103 constraining elements which
can be used to express constraints of any constraint type (Bosch et al., 2015).

Additional to the constraining element, there are properties of simple constraints which
can be seen as parameters for the constraining element. In some cases, a simple constraint
is only complete when a constraining value is stated in conjunction with the constraining
element. Depending on the constraining element, a list of classes can be provided, for ex-
ample to determine the valid classes for a value. The constraining element of the constraint
Publication v ≥1 author.Person, e.g., is ≥, the constraining value is 1, and the list of
classes includes the class Person which restricts the objects of the property author to be
persons. The assignment of properties to the left or right property lists depends on the
constraining element.

Object property paths (R-55 ) ensure that if an individual x is connected by a sequence
of object properties with an individual y, then x is also related to y by a particular object



Proc. Int’l Conf. on Dublin Core and Metadata Applications 2015

property. As Stephen-Hawking is the author of the book A-Brief-History-Of-Time whose
genre is Popular-Science, the object property path authorOf ◦ genre v authorOfGenre in-
fers that Stephen-Hawking is an author of the genre Popular-Science. Thus, when repre-
senting the constraint using the RDF-CV (see Table 3), the properties authorOf and genre
are placed on the left side of the constraining element property path and the property autho-
rOfGenre on its right side. The context class limits the constraint to individuals of a specific
class. A context class may be an rdfs:Class, an owl:Class (as sub-class of rdfs:Class), or an
rdfs:Datatype which is both an instance of and a sub-class of rdfs:Class. As the property
path constraint holds for all individuals within the data, the context class is set to the DL
top concept > which stands for the super-class of all possible classes.

TABLE 3: Object Property Paths as Property Constraint
context class left p. list right p. list classes c. element c. value

> authorOf, genre authorOfGenre > property path -

Constraints of 36% of the constraint types are not expressible in DL but can still be
described using the RDF-CV such as constraints of the type literal pattern matching (R-
44 ) which restrict literals to match given patterns. The universal quantification (R-91)
Book v ∀ identifier.ISBN ensures that books can only have valid ISBN identifiers, i.e.,
strings that match a given regular expression.

Even though constraints of the type literal pattern matching cannot be expressed in DL,
OWL 2 can be used to formulate this constraint:

1 ISBN a RDFS:Datatype ; owl:equivalentClass [ a RDFS:Datatype ;

2 owl:onDatatype xsd:string ;

3 owl:withRestrictions ([ xsd:pattern "^\d{9}[\d|X]$" ])] .

The first OWL 2 axiom explicitly declares ISBN to be a datatype. The second OWL
2 axiom defines ISBN as an abbreviation for a datatype restriction on xsd:string. The
datatype ISBN can be used just like any other datatype like in the universal quantification
above.

Table 4 presents (1) how the not in DL expressible literal pattern matching constraint
and (2) how the in DL expressible universal quantification are both represented using the
RDF-CV. Thereby, the context class ISBN, whose instances must satisfy the literal pattern
matching constraint, is reused within the list of classes the universal quantification refers to.
The literal pattern matching constraint type introduces the constraining element REGEX
whose validation has to be implemented once like for any other constraining element.

TABLE 4: Simple Constraints which are not Expressible in DL
context class left p. list right p. list classes c. element c. value

ISBN - - xsd:string REGEX ’ˆ\d{9}[\d|X]$’
Book identifier - ISBN universal quantification -

3.3 Complex Constraints

Complex constraints of the constraint type context-specific exclusive or of property groups
(R-13) restrict individuals of given classes to have all properties of exactly one of multiple
mutually exclusive property groups. Publications, e.g., are either identified by an ISBN
and a title (for books) or by an ISSN and a title (for periodical publications), but it should
not be possible to assign both identifiers to a given publication. This complex constraint is
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expressible in ShEx:

1 Publication {

2 ( isbn string , title string ) |

3 ( issn string , title string ) }

If The-Great-Gatsby is a publication with an ISBN and a title without an ISSN, The-
Great-Gatsby is considered as a valid publication. This complex constraint is generically
expressible in DL:

Publication v (¬E u F) t (E u ¬F) , E ≡ A u B , F ≡ C u D
A v ≥ 1 isbn.string u ≤ 1 isbn.string , B v ≥ 1 title.string u ≤ 1 title.string
C v ≥ 1 issn.string u ≤ 1 issn.string , D v ≥ 1 title.string u ≤ 1 title.string

The DL statements demonstrate that the complex constraint is composed of many other
complex constraints (minimum (R-75) and maximum qualified cardinality restrictions (R-
76)) and simple constraints (intersection (R-15/16), disjunction (R-17/18), and negation
(R-19/20)). Constraints of almost 14% of the constraint types are complex constraints
which can be simplified and therefore formulated as simple constraints when using them
in terms of syntactic sugar. As exact (un)qualified cardinality restrictions (R-74/80) (=n)
and exclusive or of property groups (R-13) are constraint types of frequently used complex
constraints, we propose to simplify them in form of simple constraints. As a consequence,
the context-specific exclusive or of property groups complex constraint is represented as a
generic constraint by means of the RDF-CV more intuitively and concisely (see Table 5).

TABLE 5: Simplified Complex Constraints
context class left p. list right p. list classes c. element c. value
Publication - - E, F exclusive or -

E - - A, B intersection -
F - - C, D intersection -
A isbn - string = 1
B title - string = 1
C issn - string = 1
D title - string = 1

The primary key properties (R-226) constraint type is often useful to declare a given
(datatype) property as the primary key of a class, so that a system can enforce uniqueness.
Books, e.g., are uniquely identified by their ISBN, i.e., the property isbn is inverse functional
(funct isbn ) which can be represented using the RDF-CV in form of a complex constraint
consisting of two simple constraints (see Table 6). The meaning of these simple constraints
is that ISBN identifiers can only have isbn relations to at most one distinct book.

TABLE 6: Primary Key Properties as Complex Constraints
context class left p. list right p. list classes c. element c. value

> isbn− isbn - inverse property -
Book isbn− - - ≤ 1

Keys, however, are even more general, i.e., a generalization of inverse functional properties
(Schneider, 2009). A key can be a datatype, an object property, or a chain of properties.
For these generalization purposes, as there are different sorts of keys, and as keys can lead
to undecidability, DL is extended with a special construct keyfor (Lutz, Areces, Horrocks,
& Sattler, 2005). When using keyfor (isbn keyfor Book), the complex constraint can
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be simplified and thus formulated as a simple constraint which looks like the following in
concrete RDF turtle syntax:

1 [ a rdfcv:SimpleConstraint ;

2 rdfcv:contextClass Book ;

3 rdfcv:leftProperties ( isbn ) ;

4 rdfcv:constrainingElement "primary key" ] .

Complex constraints of frequently used constraint types which correspond to DL axioms
like transitivity, symmetry, asymmetry, reflexivity and irreflexivity can also be simplified in
form of simple constraints. Although these DL axioms are expressible by basic DL features,
they can also be used in terms of syntactic sugar.

Constraints of the irreflexive object properties (R-60) constraint type ensure that no
individual is connected by a given object property to itself (Krötzsch et al., 2012). With
the irreflexive object property constraint > v ¬∃authorOf.Self , e.g., one can state that
individuals cannot be authors of themselves. When represented using the RDF-CV, the
complex constraint aggregates three simple constraints (see Table 7).

TABLE 7: Irreflexive Object Properties as Complex Constraints
context class left p. list right p. list classes c. element c. value
∃ authorOf.Self authorOf - Self existential quantification -
¬∃ authorOf.Self - - ∃ authorOf.Self negation -

> - - >, ¬∃ authorOf.Self sub-class -

When using the irreflexive object property constraint in terms of syntactic sugar, the
complex constraint can be expressed more concisely in form of a simple property constraint
with exactly the same semantics (see Table 8):

TABLE 8: Irreflexive Object Properties as Simple Constraints
context class left p. list right p. list classes c. element c. value

> authorOf - - irreflexive property -

3.4 Mapping Implementation

Using the framework for the implementation of a constraint language is straight-forward.
For each language construct, the corresponding constraint type has to be identified. Again
we use the constraint Publication v ≥1 author.Person of the type minimum qualified car-
dinality restrictions (R-75) which is supported in OWL 2:

1 :Publication

2 a owl:Restriction ;

3 owl:minQualifiedCardinality 1 ;

4 owl:onProperty :author ;

5 owl:onClass :Person .

From Table 2, we know the representation in our framework, which corresponds to the
following RDF representation using the RDF-CV:

1 [ a rdfcv:SimpleConstraint ;

2 rdfcv:contextClass :Publication ;

3 rdfcv:leftProperties ( :author ) ;

4 rdfcv:classes ( :Person ) ;

5 rdfcv:constrainingElement "minimum qualified cardinality restriction" ;

6 rdfcv:constrainingValue 1 ] .
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The mapping simply constructs this generic representation out of the specific OWL 2
representation using a SPARQL CONSTRUCT query:

1 owl:Thing

2 spin:rule [ a sp:Construct ; sp:text """

3 CONSTRUCT {

4 :minimum-qualified-cardinality-restrictions

5 a rdfcv:SimpleConstraint ;

6 rdfcv:contextClass ?this ;

7 rdfcv:leftProperties :leftProperties ;

8 rdfcv:classes :classes ;

9 rdfcv:constrainingElement "minimum qualified cardinality restriction" ;

10 rdfcv:constrainingValue ?cv .

11 :leftProperties

12 rdf:first ?lp1 ;

13 rdf:rest rdf:nil .

14 :classes

15 rdf:first ?c1 ;

16 rdf:rest rdf:nil . }

17 WHERE {

18 ?this

19 a owl:Restriction ;

20 owl:minQualifiedCardinality ?cv ;

21 owl:onProperty ?lp1 ;

22 owl:onClass ?c1 . } """ ; ] .

The SPIN engine is used to execute the mapping, the property spin:rule links an rdfs:Class
with SPARQL CONSTRUCT queries. Each query defines an inference rule that is applied
to all instances of the associated class and its subclasses. The inference rule defines how
additional triples can be inferred from what is stated in the WHERE clause. For each
binding of the pattern in the WHERE clause of the rule, the triple templates from the
CONSTRUCT clause are instantiated and added as inferred triples to the underlying model.
At query execution time, the SPARQL variable ?this is bound to the current instance of
the class. As each resource per default is assigned to the class owl:Thing, this inference rule
is evaluated for each subject of the input RDF graph.

The framework and therefore the constraint types are implemented in exactly the same
way by providing other SPIN mappings which encompass the SPIN/SPARQL queries that
validate constraints and produce constraint violation messages if a constraint is violated, as
described in our previous paper about the DSP implementation (Bosch & Eckert, 2014b).15

3.5 Constraint Transformation

As stated in Section 2, we see a huge potential in the possibility to transform semantically
equivalent constraints from one high-level constraint language to another via the RDF-CV
representation, to avoid that every possible combination of constraint languages has to
be mapped separately. The following SPIN inference rule exemplifies this approach and
provides a mapping from RDF-CV back to the OWL 2 constraint of the type minimum
qualified cardinality restrictions:

1 owl:Thing

2 spin:rule [ a sp:Construct ; sp:text """

3 CONSTRUCT {

4 ?cc

5 a owl:Restriction ;

15At the time of this writing, not all mappings for the constraint types are implemented, but of course the
implementations can be complemented and adapted to own requirements, as needed. The most recent
implementation can be found here: https://github.com/boschthomas/rdf-validation/blob/master/

SPIN/RDF-CV-2-SPIN.ttl
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6 owl:minQualifiedCardinality ?cv ;

7 owl:onProperty ?lp1 ;

8 owl:onClass ?c1 . }

9 WHERE {

10 ?this

11 a rdfcv:SimpleConstraint ;

12 rdfcv:contextClass ?cc ;

13 rdfcv:leftProperties ?leftProperties ;

14 rdfcv:classes ?classes ;

15 rdfcv:constrainingElement "minimum qualified cardinality restriction" ;

16 rdfcv:constrainingValue ?cv .

17 ?leftProperties

18 rdf:first ?lp1 ;

19 rdf:rest rdf:nil .

20 ?classes

21 rdf:first ?c1 ;

22 rdf:rest rdf:nil . } """ ; ] .

It can be seen that the mapping is quite similar to the first mapping and basically simply
switches the CONSTRUCT and WHERE part of the query, with slight adjustment in the
structure of the variables. Potentially an even simpler representation for the mapping could
be found that would enable the creation of forward and backward mappings out of it. We
didn’t investigate this further, though, and it is not yet clear if there can be cases where
the backward mapping is more different.

4 Related Work

In this section, we present current languages for RDF constraint formulation and RDF
data validation. SPIN, SPARQL, OWL 2, ShEx, ReSh, and DSP are the six most promising
and mostly used constraint languages. In addition, the W3C Data Shapes Working Group
currently develops SHACL, an RDF vocabulary for describing RDF graph structures.

The SPARQL Query Language for RDF (Harris & Seaborne, 2013) is generally seen as
the method of choice to validate RDF data according to certain constraints (Fürber &
Hepp, 2010), although, it is not ideal for their formulation. In contrast, high-level con-
straint languages are comparatively easy to understand and constraints can be formulated
more concisely. Declarative languages may be placed on top of SPARQL and SPIN when
using them as implementation languages. The SPARQL Inferencing Notation (SPIN)16

(Knublauch, Hendler, & Idehen, 2011) provides a vocabulary to represent SPARQL queries
as RDF triples and uses SPARQL to specify logical constraints and inference rules (Fürber
& Hepp, 2010). Kontokostas et al. define 17 data quality integrity constraints represented
as SPARQL query templates called Data Quality Test Patterns (DQTP) (Kontokostas et
al., 2014).

The Web Ontology Language (OWL) (Hitzler, Krötzsch, Parsia, Patel-Schneider, & Rudolph,
2012) formally specifies the intended semantics of conceptual models about data and there-
fore enables software to understand data. OWL has become a popular standard for data
representation, data exchange, and data integration of heterogeneous data sources. Besides
that, the retrieval of data benefits from semantic knowledge specified using OWL. In combi-
nation with the OWL-based Semantic Web Rule Language (SWRL) (Horrocks et al., 2004),
OWL provides facilities for developing very powerful reasoning services. Reasoning on RDF
data enables to derive implicit data out of explicitly stated data. OWL is based on formal
logic and on the subject-predicate-object triples from RDF. OWL is actually a description
logic with underlying formal semantics which allows one to assign truth values to syntactic

16http://spinrdf.org
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expressions. OWL specifies semantic information about specific domains, describes relations
between domain classes, and thus allows the sharing of conceptualizations.

Because of the design of OWL for reasoning, there are claims that OWL cannot be used
for validation. In practice, however, OWL is well-spread and RDFS/OWL constructs are
widely used to tell people and applications about how valid instances should look like. In
general, RDF documents follow the syntactic structure and the semantics of RDFS/OWL
ontologies which could therefore not only be used for reasoning but also for validation.

Stardog Integrity Constraint Validation (ICV) and the Pellet Integrity Constraint Val-
idator (ICV) use OWL 2 constructs to formulate constraints. The Pellet ICV17 is a proof-
of-concept extension for the OWL 2 DL reasoner Pellet (Sirin, Parsia, Grau, Kalyanpur, &
Katz, 2007). Stardog ICV18 validates RDF data stored in a Stardog database according to
constraints which may be written in SPARQL, OWL 2, or SWRL (Horrocks et al., 2004).

Shape Expressions (ShEx) (Prud’hommeaux, 2014; Solbrig & Prud’hommeaux, 2014;
Prud’hommeaux, Labra Gayo, & Solbrig, 2014; Boneva et al., 2014) specifies a language
whose syntax and semantics are similar to regular expressions. ShEx associate RDF graphs
with labeled patterns called shapes which are used to express formal constraints on the
content of RDF graphs. Resource Shapes (ReSh) (A. Ryman, 2014) defines its own vocab-
ulary for specifying shapes of RDF resources. Ryman, Hors, and Speicher define shape as a
description of the set of triples a resource is expected to contain and as a description of the
integrity constraints those triples are required to satisfy (A. G. Ryman, Hors, & Speicher,
2013).

The Dublin Core Application Profile (DCAP) and Bibframe Profiles are approaches to
specify profiles for application-specific purposes. The term profile is widely used to refer
to a document that describes how standards or specifications are deployed to support the
requirements of a particular application, function, community, or context. In the meta-
data community, the term application profile has been applied to describe the tailoring
of standards for specific applications. A Dublin Core Application Profile (DCAP) (Coyle
& Baker, 2009) defines metadata records which meet specific application needs while pro-
viding semantic interoperability with other applications on the basis of globally defined
vocabularies and models. The Singapore Framework for Dublin Core Application Profiles
(Nilsson, Baker, & Johnston, 2008) is a framework for designing metadata and for defining
DCAPs. The framework comprises descriptive components that are necessary or useful for
documenting DCAPs.

The DCMI Abstract Model (Powell, Nilsson, Naeve, Johnston, & Baker, 2007) is required
for formalizing a notion of machine-processable application profiles. It specifies an abstract
model for Dublin Core metadata which is independent of any particular encoding syntax.
Its primary purpose is to specify the components used in Dublin Core metadata. Nils-
son et al. (Nilsson, Powel, Johnston, & Naeve, 2008) depict how the constructs of the
DCMI Abstract Model are represented using the abstract syntax of the RDF model. A
Description Set Profile (DSP) (Nilsson, 2008) is a generic constraint language which is
used to formally specify structural constraints on sets of resource descriptions within an
application profile. DSP constrains resources that may be described by descriptions in a
description set, the properties that may be used, and the values properties may point to.
BIBFRAME 19 (Kroeger, 2013; Godby, Carol Jean and Denenberg, Ray, 2015; Miller, Eric

17http://clarkparsia.com/pellet/icv
18http://docs.stardog.com/# validating constraints
19http://bibframe.org
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and Ogbuji, Uche and Mueller, Victoria and MacDougall, Kathy, 2012) is the result of the
Bibliographic Framework Initiative and defines a vocabulary (Library of Congress, 2014a,
2014c) which has a strong overlap with DSP. BIBFRAME Profiles (Library of Congress,
2014b) are essentially identical to DCAPs.

Schemarama20 is a validation technique for specifying the types of sub-graphs you want to
have connected to a particular set of nodes in an RDF Graph. Schemarama allows to check
that RDF data has required properties. Schemarama is based on Schematron (ISO/IEC,
2006), an XML schema and XML structure validation language which works by finding tree
patterns within an XML document. Schemarama is also based on the Squish RDF Query
language (Miller, 2001), an SQL-like query language for RDF, instead of SPARQL.

In addition to the formulation of constraints, SPIN (open source API), Stardog ICV
(as part of the Stardog RDF database), DQTP (tests), Pellet ICV (extension of Pellet
OWL 2 DL reasoner) and ShEx offer executable validation systems using SPARQL as
implementation language.

The W3C Data Shapes Working Group currently develops SHACL (Knublauch, 2015;
Boneva & Prud’hommeaux, 2015; Prud’hommeaux, 2015), the Shapes Constraint Language,
an RDF vocabulary for describing RDF graph structures. Some of these graph structures are
captured as shapes, which group together constraints about the same RDF nodes. Shapes
provide a high-level vocabulary to identify predicates and their associated cardinalities,
datatypes and other constraints. Additional constraints can be associated with shapes
using SPARQL and similar executable languages. These executable languages can also be
used to define new high-level vocabulary terms. SHACL shapes can be used to communicate
data structures associated with some process or interface, generate or validate data, or drive
user interfaces.

5 Conclusion and Future Work

In this paper, we outlined our idea of a general framework to support the mapping of
high-level constraint languages to a generic representation, which can directly be validated
by providing a mapping from the generic representation to SPIN/SPARQL queries to actu-
ally validate data against constraints provided in the high-level language. The framework
consists of a very simple conceptual model using the RDF Constraints Vocabulary (RDF-
CV) which has been introduced in this paper. The core of the framework is the definition
of 103 constraining elements that are used to define constraints of all 81 constraint types
that to date have been identified within the DCMI RDF Application Profiles Task Group
and in cooperation with the W3C Data Shapes Working Group. The full definition of all
constraint types and the generic representation of the types in RDF-CV is provided in an
accompanying technical report (Bosch et al., 2015).

We have demonstrated how the framework can be used to map a constraint language
to RDF-CV and also how to map back from RDF-CV to the constraint language. The
latter enables the transformation of semantically equivalent constraints from one constraint
language to another via the RDF-CV intermediate representation.

We think that this approach is suitable

1. to implement the validation of constraints consistently across constraint languages,

2. to support the extension of constraint languages when additional constraint types

20http://www.xml.com/pub/a/2001/02/07/schemarama.html
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should be supported by means of a simple mapping, and

3. to enhance or rather establish the interoperability of different constraint languages.

It is part of future work to finalize the implementation of all 81 constraint types in our
RDF Validator, to fully map constraint languages to the RDF-CV (first and foremost DSP
and OWL 2), and of course to keep the framework in sync with the ongoing work in the
working groups.
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