
Requirements on RDF Constraint Formulation
and Validation

Thomas Bosch1 and Kai Eckert2

1 GESIS – Leibniz Institute for the Social Sciences, Germany
thomas.bosch@gesis.org,

2 University of Mannheim, Germany
kai@informatik.uni-mannheim.de

Abstract. For many RDF applications, the formulation of constraints
and the automatic validation of data according to these constraints is
a much sought-after feature. In 2013, the W3C invited experts from
industry, government and academia to the RDF Validation Workshop,
where first use cases have been presented and discussed. In collaboration
with the W3C, a working group on RDF Application Profiles (RDF-
AP) is currently established in the Dublin Core Metadata Initiative that
follows up on this workshop and addresses among others RDF constraint
formulation and validation.
In this paper, we present a database of requirements obtained from var-
ious sources, including the use cases presented at the workshop as well
as in the RDF-AP WG. The database, which is openly available and
extendible, is used to evaluate and compare several existing approaches
for constraint formulation and validation. We present a classification and
analysis of the requirments, show that none of the approaches satisfy all
requirements and aim at laying the ground for future work, as well as
fostering discussions how to close existing gaps.

Keywords: RDF Constraint Formulation, RDF Constraint Validation,
Requirements, OWL2, RDF, Linked Data, Semantic Web

1 Introduction

The notion of Linked (Open) Data and its principles clearly increased the ac-
ceptance – not to say the excitement – of data providers for the underlying
Semantic Web technology. Early concerns of the data providers regarding sta-
bility and trustability of the data have been addressed and largely been solved,
not only by technical means regarding versioning and provenance, but also by
the providers getting accustomed to the open data world with its pecularities.

Linked Data and RDF, however, still are not the primary means to create,
store, and manage data on the side of the providers. Linked Data is mostly
provided as a view on data, a one-way road, disconnected from the internal data
representation. To the obstacles for full adoption of RDF, possibly comparable
to XML, belong the lack of accepted ways to formulate (local) constraints on

data and to validate data. The W3C reports a consensus among 27 participants
from industry, government and academia of RDF Validation Workshop3 that
there are the following needs:

1. Declarative definition of the structure of a graph for validation and descrip-
tion.

2. Extensible to address specialized use cases.
3. A mechanism to associate descriptions with data.

Several use-cases with requirements have been presented at the workshop, further
requirements are described in talks about general approaches and experiences
outside of RDF, like Dublin Core Application Profiles or XML Schema Defini-
tions. An important finding is that there are non-functional requirements for
data validation in a Linked Data setting, particularly the need to “communicate
the constraints against which data is to be validated in a way which is both easy
to understand by human beings and discoverable by programs.”

SPARQL and SPIN are powerful and widely used for constraint formulation
and validation [2], but constraints formulated as SPARQL queries are not as
understandable as one wishes them to be. Consider the following example of the
simple constraint stating that only dogs are allowed as pets:

1 SELECT ?this ?subope ?object WHERE {
2 ?C owl:allValuesFrom :Dog .
3 ?C owl:onProperty :hasPet .
4 ?C a owl:Restriction .
5 ?this rdf:type ?subC . ?subC rdfs:subClassOf* ?C .
6 ?this ?subOPE ?object . ?subOPE rdfs:subPropertyOf* :hasPet .
7 FILTER NOT EXISTS { ?object rdf:type :Dog . } }

This query checks the constraint and returns violating triples, but the actual
constraint could be formulated much shorter, for instance using the OWL 2
Functional-Style syntax:

1 SubClassOf(:strictDogOwner ObjectAllValuesFrom(:hasPet :Dog))

Similarly, but even shorter, as Shape Expression:

1 <StrictDogOwnerShape> { :hasPet :Dog+ }

Partly as follow-up to the W3C workshop and partly due to further expressed
requirements at the Semantic Web in Libraries conference 20134, the Dublin
Core Metadata Initiative in collaboration with the W3C currently establishes a
Working Group for RDF Application Profiles (RDF-AP WG) that will investi-
gate existing approaches and best-practices, identify possible gaps and propose

3 RDF Validation Workshop – Practical Assurances for Quality RDF Data. 10-11
September 2013, Cambridge, MA, USA. http://www.w3.org/2012/12/rdf-val/report

4 SWIB13 – Semantic Web in Libraries, 25 - 27 November 2013, Hamburg, Germany.
http://swib.org/swib13/

practical solutions for the representation of application profiles, including the
formulation of data constraints.5 The RDF-AP WG bases its work on currently
8 case studies and use cases provided by internal and external stakeholders,
mostly from the library domain. In a heterogenous environment like the Web,
there is not necessarily a one-size-fits-all solution, especially as existing solutions
should rather be integrated than replaced, not least to avoid long and fruitless
discussions about the “best” approach.

Our work presented in this paper is supposed to lay the ground for subsequent
activites in the working group. Our contributions are two-fold: first, we propose
to relate existing solutions to specific case-studies and use-cases by means of
requirements extracted from the latter and fulfilled by the former. We there-
fore created and present an exhaustive database of all requirements identified in
the validation workshop and the RDF-AP WG. Additionally, we added require-
ments from other sources, particularly in the form of constraint types that are
supported by existing approaches, e.g., expressable in OWL2.

Second, we use this database to provide an overview on different classes of re-
quirements and give examples, to what degree these classes of requirements are
supported by different approaches. We want to highlight strengths and weak-
nesses of these approaches and identify gaps and possible solutions for their
elimination.

2 From a Case Study to a Solution (and Back)

In the development of standards, as in software, case studies and/or use cases
are usually taken as starting point. In case studies, the full background of a
specific scenario is described, where the standard or the software is to be applied.
Use cases are smaller units where a certain action or a typical user enquiry is
described. They can be extracted from and thus linked to case studies, but often
they are defined directly.

Requirements are extracted from use cases; they form the basis for devel-
opment and are used to test the result. We specifically use the requirements
to evaluate existing approaches for constraint formulation and validation. Via
the requirements, the approaches get linked to use cases and case studies and
it becomes visible which approaches can be used in a given scenario and what
drawbacks might be faced.

We classify the requirements to provide a high-level view on different ap-
proaches and to facilitate a better understanding of the problem domain. Our
database is openly available and can be extended with new case studies, use
cases, requirements and approaches.

Table 1 shows an excerpt from our database. The general structure is a
polyhierarchy from case-studies over use-cases and requirements to solutions.
All instances contain at least uplinks to the next level, i.e., solutions are linked
to requirements that they fulfill and possibly requirements that they explicitly

5 http://wiki.dublincore.org/index.php/RDF-Application-Profiles

Table 1. Database Examples

ID Title Links Description

Case Studies
CS-1 DPLA UC-1 The Digital Public Library of America maintains an

access portal to digitized cultural heritage objects...
We harvest data using several different methods...6

Use Cases
UC-1 Recommend

Property
CS-1 Some properties may not be mandatory, but may

be recommended to indicate a “value-added” level of
compliance with MAPv3...

Requirements
R-1 Optional

Properties
UC-1 A property can be marked as optional. Valid data

MAY contain the property.
R-2 Recommended

Properties
UC-1, R-3 An optional property can be marked as recommended.

A report of missing recommended properties is gen-
erated. Fulfilled if R-3 is fulfilled.

R-3 Classified
Properties

UC-1 A custom class like “recommended” or “deprecated”
can be assigned to properties and used for reporting.

Solutions
S-1 ShEx R-1/2/3 Fulfilled: R-1 (minimum cardinality = 0, maximum

cardinality = 1). Not fulfilled: R-2, R-3.
S-2 SPIN R-1/2/3 Fullfilled: R-1, R-2, R-3.

do not fullfill. Requirements are linked to use-cases, which are linked to case
studies.

The polyhierarchy allows the linking of all elements to more than one parent,
requirements particularly are linked to several use cases. Our goal is to maintain a
set of distinct requirements. Only this way it is possible to evaluate the solutions
regarding their suitability for the use cases and case studies in our database. Use
cases can be shared between case studies as well, but this is harder to maintain
as use cases are less formal and often more case specific than a requirement.

Requirement R-2 is an example, where a link between requirements is estab-
lished. In this case, the link is used to point to a requirement that is “broader”
than this requirement, i.e., should that requirement be fulfilled, then this re-
quirement is automatically fulfilled as well. In a similar way requirements can
be linked to duplicates if they should occur. Our goal is a relative stability re-
garding the requirements, which then can prove useful to mediate between data
and solution providers.

The database is made available at http://purl.org/net/rdf-validation. The
initial database was created manually and forms the basis of this paper. The
web application to access the database is currently in a beta state and still under
development. Nevertheless, the full database can already be browsed online and
interested participants can register and contribute to the database.

3 Related Work

Requirements Engineering is recognized as a crucial part of project and soft-
ware development processes. Similar to our collaborative effort, Lohmann et al.
propose social requirements engineering, i.e. the use of social software like wikis
to support collaborative requirements enginieering [4]. Their approach focuses
on simplicity and supports in particular the early phases of requirements engi-
neering with many distributed participants and mainly informal collaboration.
They emphasize the social experience of developing requirements for software
systems: Stakeholders are enabled to collaboratively collect, discuss, improve,
and structure requirements. Under the supervision of experts, the requirements
are formulated in natural language and are improved by all participants step
by step. Later on, experienced engineers may clean and refine requirements. As
basis for their work, they developed a generic approach (Softwiki) using seman-
tic technologies and the SWORE ontology for capturing requirements relevant
information semantically [5]. The SWORE ontology, as well as a prototypical
implementation of their approach is available online.7 We evaluated the imple-
mentation and the ontology regarding a possible reuse, but it turned out that
Softwiki focuses clearly on the requirements within a traditional software devel-
opment process, while we need a broader view including case studies, use cases
and various implementing approaches. Nevertheless we will reuse parts of the
SWORE ontology and include links wherever possible.

To the best of our knowledge, their is no comparable prior work regarding
the collection of a comprehensive list of requirements for the formulation and
validation of constraints, neither exist general approaches to compare different
solutions based on common or differing requirements. More related work focuses
on specific constraint languages and implementations, which we will introduce
in the next section.

4 Approaches for Constraint Formulation and Validation

In this section, we present current approaches for constraint formulation and
validation which have been the most discussed in the mentioned workshops and
WGs. These approaches differ in 2 dimensions: (1) the used constraint language
and (2) if they offer validation systems.

OWL, Resource Shapes (ReSh), Shape Expressions (ShEx), Description Set
Profiles (DSPs), SPARQL, and SPIN are the most promising and applied con-
straint languages. Stardog ICV, Pellet ICV, and SPIN use OWL 2 constructs
to formulate constraints. SPIN8 provides a vocabulary to represent SPARQL
queries as RDF triples and uses SPARQL to specify inference rules and logical
constraints [2]. The Pellet Integrity Constraint Validator (ICV)9 is a proof-of-
concept extension for the OWL reasoner Pellet. Stardog ICV10 validates RDF

7 http://softwiki.de/netzwerk/en/
8 http://spinrdf.org
9 http://clarkparsia.com/pellet/icv/

10 http://docs.stardog.com/icv/icv-specification.html

data stored in a Stardog RDF database. ReSh11 defines its own RDF vocab-
ulary Open Services for Lifecycle Collaboration (OSLC) to define constraints
[6]. ShEx12 also specifies a new constraint language whose syntax and semantics
are similar to regular expressions. DCMI RDF Application Profile (AP)13 and
Bibframe14 are approaches to specify profiles for application-specific purposes.
DCMI RDF-AP uses DSP15 as generic constraint language which is also intu-
itive for non-experts. The Bibframe constraint language has a strong overlap
with DSP. Kontokostas et al. define 17 data quality integrity constraints repre-
sented as SPARQL query templates called Data Quality Test Patterns (DQTP)
[3]. Schemarama16 is based on the Squish RDF language instead of SPARQL.
For XML, Schematron17 is an ISO standard for validation and quality control
of XML documents based on XPath and XSLT. XML Schema18 is the primary
technology for specifying and constraining the structure of XML documents.

In addition to constraint validation languages, SPIN (open source API), Star-
dog ICV (as part of the Stardog RDF database), DQTP (tests), Pellet ICV (ex-
tension of Pellet OWL reasoner) and ShEx offer executable validation systems
using SPARQL as implementation language.

In this paper, we evaluate to which extend these approaches cover classes of
requirements (1) to express different types of constraints and (2) to formulate
constraints. For the formulation of constraints, it is important that the constraint
language is concise and intuitive and that the declarative constraint language
is translated to an implementation language like SPARQL in order to execute
constraint validation automatically. In form of concrete examples, we show how
current approaches can be used to express different types of constraints and how
they can be used together to fulfill the majority of the identified requirements
classes.

5 Requirements

Use cases discussed within the scope of the mentioned workshops and working
groups leaded to the definition of requirements on RDF constraint formulation
and validation. We classified these requirements into the 2 top-level categories
’Constraint Formulation’ and ’Constraint Expressivity’.

5.1 Formulation of Constraints

Intuitive and concise language. We claim that all constraints can be ex-
pressed using the low-level language SPARQL. The majority of the constraints

11 http://www.w3.org/Submission/shapes/
12 http://www.w3.org/2013/ShEx/Definition
13 http://dublincore.org/documents/singapore-framework/
14 http://bibframe.org/
15 http://dublincore.org/documents/dc-dsp/
16 http://swordfish.rdfweb.org/discovery/2001/01/schemarama/
17 http://www.schematron.com/
18 http://www.w3.org/TR/xmlschema-1/

can also be written more declaratively, intuitively, and concisely in form of OWL
2 axioms in the concrete syntax Turtle. Although, OWL 2 is a very expressive lan-
guage, we cannot express every constraint in OWL 2. The succeeding existential
quantification contains those individuals that are connected by the :fatherOf

property to individuals that are instances of the class :Man. The ontology, the
constraint, and RDF data are expressed with the same OWL 2 axiom and the
same concrete syntax:

1 [rdfs:subClassOf [
2 a owl:Restriction;
3 owl:onProperty :fatherOf;
4 owl:someValuesFrom :Man]] .

The main purpose of OWL 2 is to infer new knowledge from existing schemata
and data rather than to check data for inconsistencies. Therefore, most con-
straint validation approaches define constraints with other high-level declarative
languages, even though most people are familiar with OWL 2 and its concise
human-understandable concrete syntax Turtle. OWL 2 can be used to describe
RDF data, to infer new knowledge, and to validate RDF data using the same
expressive OWL 2 axioms. With XML Schemas, we also structure and validate
our data according to that structure.

Shape Expressions contain elements from regular expressions making the
language concise and intuitive. In the following example, an employee has at
least 1 given name, 1 family name, any number of phone numbers, and 1 mail
box:

1 <EmployeeShape> {
2 foaf:givenName xsd:string+ ,
3 foaf:familyName xsd:string ,
4 foaf:phone IRI* ,
5 foaf:mbox IRI }

As different constraints can be expressed with different languages, we propose
to use multiple languages to define constraints depending on the requirements
which have to be satisfied.

Translated to implementation language. High-level declarative languages
like OWL 2 cannot be executed directly to validate constraints. Therefore, we
take a low-level execution language like SPARQL. Sirin and Tao showed how con-
straints can be translated to nonrecursive Datalog programs for validation [7] and
Angles and Gutierrez explained that SPARQL has the same expressive power as
nonrecursive Datalog programs [1]. As a consequence, we can also use SPARQL
queries to validate constraints. Thus, constraint validation can be reduced to
SPARQL query answering. The participants of the 2013 W3C RDF Validation
workshop agreed that SPARQL should be the language to execute constraint
validation19. Furthermore, all evaluated constraint validation approaches exe-
cute constraint validation with SPARQL. The next SPARQL query shows how
the OWL 2 existential quantification is implemented in SPIN:

19 http://www.w3.org/2013/09/10-rdfval-minutes

1 CONSTRUCT {
2 _:violation
3 a spin:ConstraintViolation ;
4 rdfs:label ?violationMessage
5 spin:violationRoot ?this }
6 WHERE {
7 ?this rdf:type ?subC . ?subC rdfs:subClassOf* ?C .
8 ?C owl:someValuesFrom ?CE .
9 ?C owl:onProperty ?OPE .

10 ?C a owl:Restriction .
11 FILTER (sp:not (spl:hasValueOfType (?this, ?OPE, ?CE))).
12 FILTER EXISTS { ?this ?OPE ?object . ?object rdf:type owl:Thing . }
13 BIND ((...) AS ?violationMessage) . }

RDF representation of constraints. One of the main benefits of SPIN
is that arbitrary SPARQL queries and thus constraints are represented as RDF
triples. SPIN provides a vocabulary, the SPIN SPARQL Syntax, to represent
SPARQL queries in RDF. The benefits of an RDF representation of constraints
are:

– constraints can be consistently stored together with ontologies and RDF
data

– constraints can be easily shared on the web of data
– constraint validation can be executed automatically
– constraints can be processed by a plethora of already existing RDF tools
– constraints are linked to RDF data

The subsequent code snippet demonstrates how SPIN represents SPARQL
1.1 NOT EXISTS filter expressions in RDF:

1 FILTER NOT EXISTS { ?person foaf:name ?name }
2 -----
3 [a sp:Filter ;
4 sp:expression [
5 a sp:notExists ;
6 sp:elements (
7 [sp:subject [sp:varName "person"] ;
8 sp:predicate foaf:name ;
9 sp:object [sp:varName "name"]])]])

Our approach, which is implemented in Java, executes constraint validation
with SPIN. SPIN templates define the validation of both OWL 2 constraints
and constraints only expressible with SPARQL. These constraints are checked
for each resource of the type owl:Thing (all resources are assigned to the common
super-class owl:Thing).

Constraint validation results. Like ontologies, instance data, and con-
straints, we should also represent constraint violations in RDF. SPIN templates
construct (SPARQL CONSTRUCT) constraint violation triples containing in-
formation about constraint violations, which cannot be expressed directly in
OWL 2:

1 CONSTRUCT {
2 _:icViolation
3 a spin:ConstraintViolation ;

4 rdfs:label ?violationMessage ;
5 spin:violationRoot ?violationRoot ;
6 spin:violationPath ?violationPath ;
7 spin:violationSource ?violationSource ;
8 spin:fix ?violationFix ;
9 :severityLevel ?severityLevel }

Constraint violations (of the type spin:constraintViolation) should provide
a useful message (rdfs:label) explaining the reasons why the data did not sat-
isfy the constraints, which aids data debugging and repair. If we do not state
the triples :Peter :fatherOf :Stewie . and :Stewie a :Man ., the SPIN
template checking the OWL 2 existential quantification on the object property
:fatherOf constructs a constraint violation triple raising the message ‘Object-
SomeValuesFrom(:fatherOf :Man) - :Stewie must be an instance of :Man’.
Now, you know exactly why the data violated this constraint and you know
where you have to modify your data. Constraint violation triples contain ref-
erences to triples causing the constraint violations (spin:violationRoot) and
references to constraints causing constraint violations (spin:violationSource).
In our example, the subject :Peter causes the constraint violation and the con-
straint :ObjectSomeValuesFrom constructs the constraint violation triple. To
fix constraint violations we need to give some guidance how to become valid
data (spin:fix). Appropriate triples may point to useful messages explaining
in detail how to overcome constraint violations. Constraint violations can be
classified according to different levels of severity (:severityLevel having con-
trolled vocabulary as range with elements like :Error and :Warning). It is also
important to find not validated triples, i.e. triples which have not been validated
by any constraint, as it may be enforced that every triple of the data have to be
validated.

5.2 Constraint Expressivity

Cardinality Restrictions. Class expressions in OWL 2 can be formed by plac-
ing restrictions on the cardinality of object and data property expressions. All
cardinality restrictions can be qualified or unqualified. The class expressions con-
tain those individuals that are connected by a property expression to at least,
at most, and exactly a given number of instances of a specified class expression.
Qualified and unqualified cardinality restrictions can be expressed in OWL 2:

1 :CE rdfs:subClassOf [
2 a owl:Restriction ;
3 owl:maxQualifiedCardinality "1"^^xsd:nonNegativeInteger ;
4 owl:onProperty :hasSon ;
5 owl:onClass :Man] .
6 :Peter a :CE ;
7 :hasSon :Stewie [a :Man] .

:Peter is an instance of the class expressions containing those individuals having
at most 1 son which is :Stewie in the RDF instance data. If we state that
:Peter has a second son or if we do not assign :Stewie to the class :Man, the
qualified maximum cardinality restriction will be violated. SPIN, Stardog, and

Shape Expressions are the only approaches with witch qualified and unqualified
cardinality restrictions on data and object properties can be specified.

Disjointness. Disjointness of classes and union of class expressions, (class-
specific) object and data properties, and individuals is a very important type of
constraints which can be completely covered with SPIN (implementing OWL 2
constructs). An OWL 2 disjoint union axiom DisjointUnion(C CE1 ... CEn)
states that a class C is a disjoint union of the class expressions CEi, 1 ≤ i ≤ n,
all of which are pairwise disjoint. Each instance of C is an instance of exactly
one CEi, and each instance of CEi is an instance of C20. According to the next
disjoint union of 2 class expressions, each child is either a boy or a girl, each boy
is a child, each girl is a child, and nothing can be both a boy and a girl. As in
this example, :Stewie is both a boy and a girl, a constraint violation is raised:

1 :Child owl:disjointUnionOf (:Boy :Girl) .
2 :Stewie a :Child ; a :Boy ; a :Girl .

Disjoint groups of object and data properties can be expressed in OWL 2:

1 [rdf:type owl:Class ;
2 owl:unionOf (
3 [rdf:type owl:Restriction ;
4 owl:qualifiedCardinality 1 ;
5 owl:onProperty foaf:name ;
6 owl:onClass xsd:string]
7 [rdf:type owl:Class ;
8 owl:intersectionOf (
9 [rdf:type owl:Restriction ;

10 owl:minQualifiedCardinality 1 ;
11 owl:onProperty foaf:givenName ;
12 owl:onClass xsd:string] .
13 [rdf:type owl:Restriction ;
14 owl:qualifiedCardinality 1 ;
15 owl:onProperty foaf:familyName ;
16 owl:onClass xsd:string])])] .

In this example, we define a shape for persons. A person has either a FOAF
name or 1 or more given names and 1 family name. Although this kind of con-
straint can be realized in OWL 2, the definition of disjoint groups of properties is
not that intuitive and declarative. Exactly the same constraint can be expressed
more concisely with Shape Expressions:

1 <PersonShape> {
2 (foaf:name xsd:string
3 |
4 foaf:givenName xsd:string+ ,
5 foaf:familyName xsd:string) }

Shape Expressions and SPIN are the only approaches to specify disjoint
groups of properties for given classes.

Constraints on RDF Properties. Object as well as data properties may
be constrained. The main component of an OWL 2 ontology is a set of axioms

20 http://www.w3.org/TR/owl2-syntax/

- statements that say what is true in the domain. OWL 2 provides axioms that
can be used to characterize and establish relationships between object and data
property expressions. An object property functionality axiom states that an
object property expression is functional - that is, for each individual x, there
can be at most one distinct individual y such that x is connected by the object
property expression to y21. With Pellet ICV, we can state a couple of object and
data property axioms like the following object property functionality axiom in
OWL Turtle syntax [7]:

1 :isManufacturedBy a owl:FunctionalProperty .
2 :Product :isManufacturedBy :Manufacturer1 , :Manufacturer2 .

The object property :isManufacturedBy is defined as functional. The OWL
interpretation would infer that the manufacturers are the same resources, as
nothing contradicts the inference that these two manufacturers are the same
and there is no Unique Name Assumption. With constraint semantics, however,
a constraint violation is raised. With Resource Shapes 2.0 and Shape Expressions
it is not possible to declare functionality axioms on object and data properties.
We can define these axioms with SPIN (and OWL 2), Stardog, and Pellet.

Object property paths (supported by Stardog and SPIN) are important con-
straints within various domains. Object property chains can be expressed as
OWL 2 axioms SubObjectPropertyOf(ObjectPropertyChain(OPE1 ... OPEn

) OPE) stating that, if an individual x is connected by a sequence of object
property expressions OPE1, ..., OPEn with an individual y, then x is also con-
nected with y by the object property expression OPE22. As the triple :Stewie

:hasAunt :Carol . is not contained in the following data set, a constraint vi-
olation results:

1 :hasAunt owl:propertyChainAxiom (:hasMother :hasSister) .
2 :Stewie :hasMother :Lois . :Lois :hasSister :Carol .

Constraints on RDF objects. For RDF objects, we can state constraints
such as allowed values, default values, and negative object constraints. Resource
Shapes 2.0 enables defining allowed values for RDF objects as well as RDF
literals:

1 :oslc-change-request a oslc:ResourceShape ;
2 oslc:property :oslc_cm-status .
3 :oslc_cm-status a oslc:Property ;
4 oslc:allowedValues :status-allowed-values .
5 :status-allowed-values a oslc:AllowedValues ;
6 oslc:allowedValue "Done" , "InProgress" , "Submitted" .

The constraint above specifies the only allowed values of the status data property
for change request resources. If change requests have other status values, con-
straint violations will be raised. In addition to Resource Shapes 2.0, the DCMI

21 http://www.w3.org/TR/owl2-syntax
22 http://www.w3.org/TR/owl2-syntax

RDF-APs and SPIN (and OWL 2) allow specifying allowed values for RDF liter-
als. For RDF objects, we can apply the approaches Resource Shapes 2.0, Shape
Expressions, DCMI RDF-APs, and SPIN (and OWL 2) to define allowed values.

With DCMI RDF-APs and SPIN, we can declare that RDF objects and
literals have to be part of specific controlled vocabularies. These statements
are represented with DCMI RDF-APs using an RDF triple comprising an RDF
subject that is the value RDF node, an RDF predicate dcam:memberOf, and
an RDF object with a corresponding RDF URI Reference being the DCAM
vocabulary encoding scheme URI23. The following excerpt states that a given
book is assigned to the topic ’Ornitology’ which is part of a particular controlled
vocabulary:

1 :Book
2 dcterms:subject [
3 rdf:value "Ornitology" ;
4 dcam:memberOf :ControlledVocabulary] .

Constraints on RDF Literals. Constraint on RDF literals are not that
significant in the Linked Data community, but they are very important in com-
munities like the library domain. For RDF literals, range-specific, constraining
facet-specific, datatype-specific constraints, and language-specific can be defined.
We can restrict the datatypes, RDF literals have to correspond to, with XML
Schema constraining facets. SPIN allows us to implement all constraining facets.
DQTPs enables constraining literal values to match or not to match a certain
regex pattern (xsd:pattern):

1 SELECT DISTINCT ?s WHERE { ?s %% P1 %% ? value .
2 FILTER (%% NOP %% regex (str (? value), %% REGEX %)) }

P1 is the property we need to check against REGEX and NOP can be a not op-
erator (!) or empty. An example binding could be to check if the dbo:isbn

format is different (!) from “ˆ([iIsSbBnN 0-9-])*$” [3]. DQTPs also enables con-
straining literal values (having a certain datatype) to be or not to be within a
specific range (xsd:maxInclusive, xsd:maxExclusive, xsd:minExclusive,

xsd:minInclusive):

1 SELECT DISTINCT ?s WHERE {
2 ?s rdf:type %% T1 %% . ?s %% P1 %% ?value .
3 FILTER (%% NOP %% (?value < %% Vmin %% || ?value > %% Vmax %%))) }

For instance, we can restrict geographical longitudes and latitudes (geo:lat,
geo:long) of a spatial feature to be within the range [-90,90][3]. Furthermore,
we implemented the constraining facet xsd:whiteSpace in SPIN to avoid leading
and trailing white spaces in literals. Sub-types of language-specific constraints on
RDF literals are constraints (1) to check if a literal for a specific data property
within the context of a particular class has a given language tag, (2) to check
whether the literal, within the context of a given property and class, is missing,

23 http://dublincore.org/documents/dc-rdf/

or (3) to ensure that resources of a given type must have at most 1 value of a spe-
cific language for a given data property (e.g. a single English (“en”) rdfs:label).
Default values can be defined with Bibframe, Resource Shapes 2.0, and SPIN. For
this purpose, SPIN constructors may contain SPARQL CONSTRUCT queries
for specific classes (e.g. USA is the birth country of each USCitizen):

1 :USCitizen a rdfs:Class ;
2 spin:constructor [a sp:Construct ; sp:text """
3 CONSTRUCT { ?this :birthCountry "USA" . } WHERE {} """] .

6 Evaluation

In this section, we evaluate current approaches according to the top-level classi-
fication of constraint validation requirements. This kind of evaluation is crucial
for future improvements regarding constraint formulation and validation of both
existing and new approaches. The underlying facts result primarily from the in-
dividual official specifications. We categorize requirements classes to see which
requirements are well, badly, and limited satisfied by which approaches. The goal
of this evaluation is not to completely evaluate all currently available constraint
validation approaches. We want to show in a generic way that none of the cur-
rent approaches satisfies all requirements and that different approaches cover
different requirements classes. Case studies and use cases define what require-
ments classes have to be covered. This evaluation indicates which approaches to
use to cover specific requirements classes and therefore use cases. There are 2
first level requirements classes: ’constraint expressivity’ and ’constraint formu-
lation’. Table 2 and 3 show for each approach what second level requirements
classes are covered to which extend. Numbers in brackets behind requirements
classes indicate the amount of requirements contained in that class. Numbers in
brackets in table cells indicate that requirements are limited satisfied.

Good Coverage. Although equivalence (e.g. equivalent classes) is only con-
sidered by 1 approach (SPIN), all 4 associated requirements are satisfied. 1
approach (SPIN) covers all 20 requirements on RDF properties constraints (e.g.
object property paths) and 2 approaches (DQTP and Stardog) fulfill half of
these requirements. Just 1 approach (SPIN) covers 4 of 5 identification require-
ments (e.g. to check if IRIs correspond to specific patterns). Class expressions
represent sets of individuals by formally specifying conditions on the individuals’
properties; individuals satisfying these conditions are said to be instances of the
respective class expressions. Sub-categories of this requirements class are well
satisfied by 3 approaches (DQTP, Shape Expressions, and Stardog) and nearly
exhaustively satisfied by 1 approach (SPIN). Class-relationships (e.g. subsump-
tion) and set-oriented operations (e.g. negation of classes) are not supported
by many approaches. In contrast, property occurrences (e.g. mandatory or op-
tional), property restrictions (e.g. existential quantifications), and cardinality
restrictions are supported by the majority of current approaches. Constraints on
individuals (e.g. negative object property assertions) are only considered by 1
approach (SPIN) which fulfills all associated requirements.

Table 2. Constraint Expressivity

Requirement Classes BF DCMI DQTP Pellet RS SE SPIN Stardog

Disjointness (8) 7 7 3 7 3 5
Equivalence (4) 7 7 7 7 4
Constraints on RDF properties (20) 12 3 1(1) 2 20 7
Constraints on RDF objects (7) 2 2 1 1 3(1) 5 5 2
Constraints on RDF literals (14) 2 2 4 3(1) 2(1) 7
Identification (5) 7 7 7 (2) 4 7

Uniqueness (2) 1
Provenance Constraints 7 7 7 7 7 7 7 7

Constraints on Individuals (6) 7 7 7 7 6
Class Relationships (4) 2 1 4 1
Set-Oriented Operations (6) 2 6 3
Property Occurrences (9) 1 1 1 3 6 6 2
Property Restrictions (10) 1 2 2 8 3
Cardinality Restrictions (12) 7 7 6 7 (12) 12 12 3

Limited Coverage. Approach developers should mention requirements which
are not covered exhaustively by current approaches. Only 3 approaches (DQTP,
Shape Expressions, and SPIN) consider disjointness constraints (e.g. class-specific
disjoint property groups) and 1 approach (SPIN) covers 5 of 8 disjointness re-
quirements. 5 of 7 requirements on RDF objects constraints (e.g. allowed values)
can be expressed with 2 approaches (Shape Expressions and SPIN). There are
2 requirements to ensure uniqueness (e.g. unique URIs), but only 1 approach
(SPIN) satisfies 1 requirement. Other approaches do not cover uniqueness re-
quirements.

Bad Coverage. For future development of approaches it is crucial to es-
pecially consider requirements which are currently not satisfied at all by any
approach. So far, provenance constraints are not considered by approach devel-
opers. Most approaches satisfy just 2 of 14 requirements on RDF literal con-
straints (e.g. range of literal values). At least 1 approach (SPIN) covers 50% of
these requirements.

Table 3 shows constraint formulation requirements (classes) and their cov-
erage by current approaches. Even though, almost each constraint language is
intuitive, only 4 constraint languages can be seen as both intuitive and concise
(Pellet, Shape Expressions, SPIN, and Stardog). 3 of these 4 approaches use
OWL 2 as declarative language - the standard language to define ontologies.
Shape Expressions uses a language similar to regular expressions.

5 of 8 approaches translate declarative constraints formulations to an imple-
mentation language (e.g. SPARQL) to execute constraint validation. It is very
important for future enhancements by the whole community that implementa-
tions are not only existent but also publicly available. 5 of 8 approaches are
implemented, but implementations are publicly available for only 2 approaches
(public availability of implementations is limited for 2 further approaches). Con-
straints are represented as RDF triples by only 1 approach (SPIN). RDF should

Table 3. Constraint Formulation

Requirement Classes BF DCMI DQTP Pellet RS SE SPIN Stardog

Intuitive Language ∼
Concise Language 7 7 7

Translated to Implementation Language 7 7 7

Implemented Constraint Validation 7 7 7

Implementation Publicly Available 7 7 ∼ 7 7 ∼
RDF Representation of Constraints 7 7 7 7 7 7 7

Constraint Validation Results (10) 7 7 2 2 7 6 9 1

be the natural and standard format to represent constraints within the Linked
Data community. 2 approaches (Shape Expressions and SPIN) cover almost all
requirements on validation results (e.g. providing some guidance how to become
valid data). Unfortunately, 3 of the remaining approaches cover requirements on
validation results very poorly.

7 Conclusions and Future Work

Heterogenous approaches with different strengths and weaknesses are not a bad
thing; we do not expect there to be a one-size-fits-all solution, nor do we aim
at creating one. With this paper, we rather want to raise the awareness towards
the differences and commonalities of existing approaches as well as to shed some
light on the different requirements that data providers currently have. There-
fore, we presented our approach to collect case studies, use cases and especially
requirements collaboratively and in structured form. By linking the require-
ments to existing constraint languages and validation systems, we could identify
strengths and weaknesses, commonalities and differences not only intellectually,
but based on reliable data.

The main purpose of this work is to support discussions of the different
approaches and to help stakeholders in the choice or in the development of ap-
propriate solutions. In the context of application profiles, where the publication
of constraints together with the data model is crucial, we want to emphasize
the need for concise, easy to understand constraint languages. This requirement
is often neglegtected in discussions of approaches. While consistency is under-
standably desired, it has to be questioned if one constraint language can fulfill all
requirements without being overly complicated or if different approaches should
rather be used for different classes of requirements. This holds especially for dif-
ferent levels of abstraction, as the possibility to define constraints on the format
of RDF literals compared to constraints on the availability or special properties of
provenance information. Both represent examples where all current approaches
lack proper support.

Gaps within a class of requirements, e.g., disjointness, constraints on RDF
objects, or uniqueness, should be easier to close within the existing approaches.
This would lead to a harmonization of the approaches ragarding their expressiv-
ity and enable translations in-between or towards a general constraint language,

e.g., the translation of well-readable constraints in any language to executable
SPARQL queries. The latter is especially promising considering that SPARQL
is able to fulfil all functional requirements and already considered by many as a
practical solution to formulate constraints.

As future work, we plan to provide a complete implementation of OWL 2
constraints in form of SPIN templates to demonstrate this approach. We will
extend and maintain the requirements database and hope to establish it as an
important tool for the advancement of constraint formulation and validation in
RDF. Within the DCMI RDF Application Profiles Working Group, we pursue
the establishment of application profiles that among others allow to link con-
straints directly to published datasets and ontologies.

References

1. Renzo Angles and Claudio Gutierrez. The expressive power of SPARQL. In Proceed-
ings of the 7th International Semantic Web Conference (ISWC2008), pages 114–129,
2008.

2. Christian Fürber and Martin Hepp. Using SPARQL and SPIN for Data Quality
Management on the Semantic Web. In Witold Abramowicz and Robert Tolksdorf,
editors, Business Information Systems, volume 47 of Lecture Notes in Business
Information Processing, pages 35–46. Springer Berlin Heidelberg, 2010.

3. Dimitris Kontokostas, Patrick Westphal, Sören Auer, Sebastian Hellmann, Jens
Lehmann, Roland Cornelissen, and Amrapali Zaveri. Test-driven evaluation of
linked data quality. In Proceedings of the 23rd International Conference on World
Wide Web, WWW ’14, pages 747–758, Republic and Canton of Geneva, Switzerland,
2014. International World Wide Web Conferences Steering Committee.

4. Steffen Lohmann, Sebastian Dietzold, Philipp Heim, and Norman Heino. A web plat-
form for social requirements engineering. In Jürgen Münch and Peter Liggesmeyer,
editors, Software Engineering (Workshops), volume 150 of LNI, pages 309–315. GI,
2009.

5. Steffen Lohmann, Philipp Heim, Sören Auer, Sebastian Dietzold, and Thomas
Riechert. Semantifying requirements engineering – the softwiki approach. In
Proceedings of the 4th International Conference on Semantic Technologies (I-
SEMANTICS ’08), J.UCS, pages 182–185, 2008.

6. Arthur G. Ryman, Arnaud Le Hors, and Steve Speicher. Oslc resource shape: A
language for defining constraints on linked data. In Christian Bizer, Tom Heath,
Tim Berners-Lee, Michael Hausenblas, and Sören Auer, editors, LDOW, volume 996
of CEUR Workshop Proceedings. CEUR-WS.org, 2013.

7. E. Sirin and J. Tao. Towards integrity constraints. In Proceedings of the Workshop
on OWL: Experiences and Directions, OWLED 2009, 2009.

