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Abstract—Designing domain ontologies from scratch is a time-
consuming process. In many cases, both the terminologies and 
the syntactic structures of domain data models are already 
described in form of XML Schemas. XSLT transformations are 
used to lift the syntactic level of XML documents to the semantic 
level of OWL ontologies by mapping any XML Schemas to 
generated ontologies automatically. Ontology engineers base 
domain ontologies on generated ontologies to enrich the 
information located in the XML schemas with additional domain 
specific semantic information. The aim of this paper is to show 
the implementation of the general approach transforming any 
XML Schemas into generated ontologies automatically using 
XSLT.   

Keywords-XSLT, OWL, XML Schema 

I.  INTRODUCTION 

XML [1] documents are commonly used to store and 
transfer information in distributed environments. XML 
documents may be instances of XML Schemas [2] determining 
their terminology and syntactic structure. XML represents a 
large set of information within the context of various domains 
and has reached wide acceptance as standard data exchange 
format in e-business. This objective fact has driven the 
development of general-purpose tools for converting XML 
Schemas to OWL ontologies. Both data and metadata, 
structured by ontologies, can be published in the increasingly 
popular and widely adopted LOD cloud to get linked with a 
huge number of other RDF datasets [3]. As RDF is an 
established standard, there is a plethora of tools which can be 
used to interoperate with data and metadata represented in 
RDF. 

XML Schema and OWL follow differing modeling goals. 
On the one hand, the XML data model describes the 
terminology and the syntactic structure of XML documents, a 
node labeled tree [4]. OWL, otherwise, is based on formal 
logic and on the subject-predicate-object triples from RDF [5]. 
OWL specifies semantic information about specific domains 
of interest, describes relations between domain classes and 
thus allows the sharing of conceptualizations. An effective and 
efficient cooperation between e-business partners is only 
possible if they agree on a common syntax (specified by XML 
Schemas) and have a common understanding of the domain 

classes (defined by OWL ontologies). The authors of this 
paper attempt to bridge the gap between XML Schema and 
OWL by lifting the syntactic level of XML documents to the 
semantic level of OWL ontologies.  

II. PROBLEM 

The process developing domain ontologies is very time-
consuming. XML Schemas describing specific domains are 
often existent in early stages of the ontology design process. 
The traditional procedure is to transfer the information located 
in XML Schemas of certain data models to OWL ontologies 
manually, which requires a lot of time. Saved time could be 
used more effective to extend the knowledge expressed in the 
XML Schemas in order to enrich the data models with 
supplementary domain specific information. In this paper, the 
authors describe the implementation of a generic multilevel 
approach accelerating the process designing domain 
ontologies from scratch based on already available XML 
Schemas. The intention of this approach is to create generated 
ontologies completely automatically based on any XML 
Schemas, expressing domain data models, using XSLT 
transformations. The direct mapping from XML and XML 
Schema to RDF and OWL is not sufficient, since it only 
transports information about the terminology and the syntactic 
structure of XML document instances. Semantic information 
has to be added in a further step. Initially generated ontologies 
are connected to domain ontologies using equivalence 
relationships. Thus, ontology engineers, collaborating with 
experts of given domains, enrich domain ontologies with 
additional semantics not or not satisfyingly covered by the 
underlying XML Schemas. Domain experts as well as 
ontology engineers enhance domain ontologies with further 
semantic information needed for tasks typically performed in 
particular domains. 

Compared with previous general-purpose tools for 
transforming XML Schemas into OWL ontologies, the novelty 
of the developed approach is that the translation of XML 
Schemas into OWL ontologies is based on the XML Schema 
for XML Schemas, the XML Schema meta-model [6]. As this 
approach considers each component of the XML Schema 
abstract data model, unexceptionally any XML Schema can be 
transformed into an OWL ontology in a totally automatic 
manner without any manual adaption after the translation 



process. Most tools try extracting semantics directly out of 
XML Schemas. The suggested approach, in contrast, only 
gains information about the terminology and the syntactic 
structure of XML document instances contained in XML 
Schemas. Semantic domain specific information is associated 
to domain ontologies in a next step.  

III. GENERIC MULTILEVEL APPROACH DESIGNING DOMAIN 

ONTOLOGIES BASED ON XML SCHEMAS 

Figure 1 sketches the devised concept of the generic 
multilevel approach designing domain ontologies based on 
XML Schemas.  
 

 

Figure 1.  Generic multilevel approach designing domain ontologies based on 
XML Schemas. 

The main goal of this approach is that XSLT 
transformations map any XML Schemas to generated 
ontologies automatically without subsequent manual 
adaptations. The components of the XML Schema abstract data 
model [6], also called element information items in the XML 
representation, are mapped directly to classes of the XML 
Schema Metamodel Ontology. This generic ontology consists 
of super-classes of the generated ontologies’ classes, datatype 
properties, object properties and universal restrictions on both 
property types. The generated ontologies’ classes correspond to 
element information items located in the XML Schemas. 
Generated ontologies and external ontologies are related to 
domain ontologies via class equivalence relationships. As a 
consequence, domain ontologies contain all the information 
located in the XML Schemas of particular domains. After the 
process translating XML Schemas into generated OWL 
ontologies, ontology engineers collaborate with domain experts 
in order to add supplementary semantic information, not 
expressed in the underlying XML Schemas, to domain 
ontologies. 

IV. AUTOMATIC GENERATION OF OWL ONTOLOGIES 

BASED ON XML SCHEMAS USING XSLT TRANSFORMATIONS 

A. Definition of RDF Document Header Information 

RDF documents consist of a header and an ontology. The 
RDF document header information, including an XML 
declaration, an optional document type declaration, an RDF 
document header, and an OWL document header, is specified 
by invoicing appropriate templates within the template for the 
document node representing the input XML Schema. The file 
extension of the output file is set to ‘.owl’, since OWL 
documents, which are RDF documents as well, are generated. 
The XML declaration includes the XML version and the 
character set, the encoding of the RDF document’s content. 
The document type declaration contains internal entity 
declarations specifying abbreviations for long namespace URI 
strings used in the RDF document. The RDF document header 
defines the default namespace of the RDF document, the base 
URL, as well as the XML Schema, RDF, RDFS, OWL, and 
XML Schema Metamodel Ontology’s namespace prefixes. 
The OWL document header includes the statements of the 
ontology IRI, the ontology version IRI as well as the 
instruction importing the XML Schema Metamodel 
Ontology's classes, datatype properties, object properties, and 
class axioms.  

The ontology IRI is set to ‘<base ontology IRI>/<local 
ontology IRI>.owl’ and is used to identify the ontology in the 
context of the WWW. The ontology IRI represents the URL 
where the latest version of the ontology is published. The base 
ontology IRI is defined as ‘http://www.semanticweb.org/ 
ontologies/XMLSchemaOntologies’. The local part of the 
ontology IRI is determined as follows: The XML Schema’s 
element information items are specified in the target 
namespace of this XML Schema. If the target namespace of 
the current XML Schema is stated, this information is used as 
local ontology IRI. As the target namespace is not a 
mandatory attribute of XML Schemas’ root elements, a user-
defined local ontology IRI can also be passed to the translation 
process as input parameter. Finally, if there is neither a target 
namespace specified nor a user-defined local ontology IRI 
delivered, the file name of the input XML Schema serves as 
local part of the ontology IRI.  

The ontology version IRI corresponds to ‘<base ontology 
IRI>/<local ontology IRI>:<local ontology version IRI>.owl’ 
and represents the URL where a given version of the ontology 
is published. Initially, the local part of the ontology version 
IRI, representing the version of the ontology the input XML 
Schema is mapped to, is set to ‘1.0.0’. Minor changes of the 
generated ontologies and the underlying XML Schemas will 
cause adjustments of the last two version levels and major 
ontology changes will cause modifications of the first version 
stage. After the definition of the RDF document header 
information and the ontology, the RDF document is closed by 
calling an appropriate template.  

 



B. Traversing the XML Schema’s Document Tree 

After the definition of the RDF document header 
information, the generated ontology representing the input 
XML Schema is specified by invoicing the template 
‘ontologyDefinition’. This template serves as starting point to 
traverse the XML Schema’s document tree in order to 
implement the mappings between the input XML Schema and 
the generated ontology beginning with the XML Schema’s 
root element ‘schema’.  

Each element information item located in the input XML 
Schema is mapped to the generated ontology by calling a 
template named according to the appropriate XML Schema 
Metamodel Ontology’s super-class representing the 
corresponding meta-element information item (e.g. ‘Schema’ 
to define the class corresponding to the element information 
item ‘schema’). As the element information item ‘schema’ is 
always the root element of any XML Schema, the XSLT 
processor calls the template ‘Schema’ first. 

 Element information items may contain other element 
information items. Part-of-relationships have been converted 
to object properties ‚contains_<domain meta-element 
information item>_<range meta-element information item>‘ 
in the XML Schema Metamodel Ontology. Containing 
element information items are in the domain of these object 
properties, contained element information items in the range. 
As, for instance, element information items ‚schema‘ may 
contain complex type definitions, the object property 
‚contains_Schema_ComplexType‘ has been defined in the 
XML Schema Metamodel Ontology. 

 After invoicing the template ‘Schema’, the XML 
Schema’s root element is located at the actual position of the 
process traversing the XML Schema’s document tree. At this 
time, the root element stands for the actual domain element 
information item, which may include multiple range element 
information items as content. After the mapping of the actual 
domain element information item to an equivalent class of the 
generated ontology, the contained range element information 
items have to be defined by calling appropriate templates 
representing the meta-element information items they belong 
to. As the element information item ‘schema’ may include 
complex type definitions, the template ‘ComplexType’ is 
invoiced for each top-level complex type definition. Then, 
each active complex type definition stands for the current 
domain element information item which is situated at the 
actual position of the traversing process. When a range 
element information item should be defined, the template 
named according to the appropriate meta-element information 
item is called with the two parameters containing the name of 
the range meta-element information item (e.g. 
‘ComplexType’) and the name of the range element 
information item. After the template is invoiced, the range 
meta-element information item is the current domain meta-
element information item and the range element information 
item is the actual domain element information item, since the 
domain element information item is now located at the current 
position of the XML Schema’s document tree traversing 
process. If the root element of the input XML Schema 

includes the complex type definition ‘ComplexType1’, for 
instance, this complex type definition is defined by invoking 
the template ‘ComplexType’ with ‘ComplexType’ as the new 
domain meta-element information item parameter and 
‘ComplexType1-Type_<local ontology IRI>-Schema’ as the 
new domain element information item parameter.  

The identifier of the current domain element information 
item is built hierarchically containing all the ancestor element 
information items’ names and the name of the actual domain 
element information item. The ancestor element information 
items include the actual domain element information item 
either directly or indirectly. The XML Schema’s root 
element’s identifier is the rightmost part of the actual domain 
element information item’s name. As a consequence, the 
names of the active domain element information items are 
built recursively. The input XML Schema’s identifier is set to 
<local ontology IRI>-Schema (e.g. inputXMLSchema-Schema 
for the input XML Schema with the target namespace 
‘inputXMLSchema’). The containing ancestor element 
information items, contributing to the overall identifier of the 
current domain element information item, are separated by the 
underscore character. Each element information item’s 
associated meta-element information item is also part of the 
entire identifier, separated from the individual element 
information item by the negative sign. If the complex type 
definition called ‘ComplexType1’, for example, is contained 
in the input XML Schema’s root element with the target 
namespace ‘inputXMLSchema’, the class with the identifier 
’ComplexType1-Type_inputXMLSchema-Schema’ is added 
to the generated ontology. 

C. Definition of domain element information items as sub-
classes of XML Schema Metamodel Ontology’s super-
classes  

Classes, standing for domain element information items 
located at the current position in the process traversing the 
XML Schema’s document tree, are specified by invoking the 
named template ‘classDefinition’ with the local ontology IRI 
and the current hierarchically built domain element 
information item’s name as formal parameters. Fully qualified 
classes’ identifiers are determined according to the pattern 
‚<base ontology IRI>/<local ontology IRI>.owl#<local class 
identifier>‘. The local class identifier always refers to the 
name of the current domain element information item. In this 
paper, the abbreviated term ‘class identifier’ is used, which is 
equivalent to the term ‘local class identifier’. To resolve fully 
qualified class identifiers, ‚<base ontology IRI>/<local 
ontology IRI>.owl#’ has to be added in front of the local class 
identifiers. 

XML Schemas’ element information items are mapped to 
sub-classes of the XML Schema Metamodel Ontology’s 
super-classes (<element information item> ⊑ <meta-element 
information item>, e.g. Element1-Element_<local ontology 
IRI>-Schema ⊑ Element) by invoking the template 
‘superClassDefinition’ with the XML Schema Metamodel 
Ontology’s super-class representing the meta-element 
information item as parameter. 



D. Definition of hasValue restrictions on XML Schema 
Metamodel Ontology’ datatype properties 

Values of element information items’ attributes and any 
well-formed XML content included in the element information 
items ‘Appinfo’ and ‘Documentation’ are transformed into 
XML Schema Metamodel Ontology’s datatype properties’ 
hasValue restrictions <domain element information item> ⊑  
∃ <attribute>|any_<domain meta-element information 
item>_String.{<String>},  as the domain element information 
item is the sub-class of the anonymous super-class of all the 
individuals which have at least one relationship along the 
datatype property ‘<attribute>|any_<domain meta-element 
information item>_String‘ to the specified individual of the 
primitive datatype ‘string’.  

To define datatype property hasValue restrictions for the 
actual domain element information item, the named template 
‘hasValueRestrictionOnDatatypeProperty’ is invoked with the 
name of the datatype property (e.g. ‘name_ComplexType_ 
String’ or ‘any_Documentation_String’) and the hasValue 
restriction, which is either the attribute value of the actual 
domain element information item (e.g. ‘./@name’) or the 
current node (‘.’), as parameters. The presence of the optional 
attributes and element information items’ XML contents is 
checked before the datatype property hasValue restriction can 
be defined. 

If hasValue restrictions on the datatype properties 
‘any_<Appinfo|Documentation>_String’ have to be defined, 
the default template for element nodes with the template mode 
‘any’ is invoked. The sequence, transmitted to this template, 
encompasses the current node representing the actual domain 
element information item ‘appinfo‘ or ‘documentation‘. The 
element nodes ‘<XML Schema namespace prefix>: 
<appinfo|documentation>‘ can include any well-formed XML 
content (i.e. text nodes, element nodes, and element nodes‘ 
attributes). The XML content is added to the result tree 
recursively by calling the element nodes’ default template 
with the template mode ‘any’ for all the child and descendent 
element nodes of the element information items ‘appinfo‘ and 
‘documentation‘. The element nodes ‘appinfo‘ and 
‘documentation‘ themselves are not part of the output tree. In 
hasValue restrictions on datatype properties not allowed 
characters (<, >, ") are escaped and the attribute and text nodes 
for each actual child or descendent element node are also 
appended to the output tree.  

E. Definition of universal restrictions on XML Schema 
Metamodel Ontology’ object properties 

1) Subsequent definition of range element information 
items is not necessary 

a) Transformation of values of element information 
item’s attributes referring to other element information items 
or to type definitions 

Values of element information items' attributes 'ref', 
'substitutionGroup', and ‘refer’, referring to other element 
information items, are converted to the XML Schema 
Metamodel Ontology’s object properties’ universal restrictions 
<domain element information item> ⊑ ∀ 

<ref|substitutionGroup|refer>_<domain meta-element infor-
mation item>_<range meta-element information item>.<range 
element information item>. The reference to the element 
information item ‘attribute’ called ‘a1’ (<xs:attribute 
ref="a1"/>), for example, is transformed into the object 
property universal restriction a1-Attribute-Reference 
<position>_<domain element information item> ⊑ ∀ 
ref_Attribute_Attribute.a1-Attribute_<local ontology IRI>-
Schema. 

Values of element information items' attributes 'type' and 
'base', referring to type definitions, are transferred to XML 
Schema Metamodel Ontology’s object properties’ universal 
restrictions <domain element information item> ⊑ ∀ 
type|base_<domain meta-element information item>_ 
Type.<range element information item>. The value of the 
attribute ‘type’ of the element information item ‘element’ 
named ‘element1’ (<xs:element name="element1" 
type="ComplexType1"/>), for instance, is converted to the 
object property’s universal restriction element1-
Element_<local ontology IRI>-Schema ⊑ ∀ type_Element_ 
Type.ComplexType1-Type_<local ontology IRI>-Schema. 

b) Definition of universal restrictions on object 
properties   

Universal restrictions on these two object properties are 
specified by invoking the template ‘universalRestrictionOn 
ObjectPropertyNotContainedRangeElementInformationItems’ 
with the name of the object property (e.g. 
‘ref_Attribute_Attribute’ or ‘type_Element_Type’), the 
domain element information item’s identifier, and either the 
name of the range element information item (e.g. 
‘./@substitutionGroup’) or of the type definition (e.g. 
‘./@base’), which represent the range element information 
item part of the universal restriction, as parameters. As the 
attributes, including the range element information items of 
the object properties’ universal restrictions, are not mandatory, 
the object properties’ universal restrictions can only be 
defined if the attributes are present. 

In order to specify the object properties’ universal 
restrictions, the general template ‘universalRestrictionOn 
ObjectProperty’ is called with the name of the object property, 
the range element information item’s ontology IRI, and the 
name of the range element information item as parameters.  

The range element information items do not have to be 
defined after the specification of the object properties’ 
universal restrictions, since classes, representing other element 
information items or type definitions, are already defined or 
will still be defined in the process traversing the XML 
Schema’s document tree.     

c) Definition of range element information items’ class 
identifiers and ontology IRIs 

As the range element information item can be defined in 
an external XML Schema, the ontology IRI of the range 
element information item has to be determined first by 
invoicing the named template ‘getNotContainedRange 
ElementInformationItemOntologyIRI’ with the range element 
information item as formal parameter. If the attribute includes 
a namespace prefix, the ontology IRI corresponds to ‘<base 



ontology IRI>/<external local ontology IRI>.owl’, since the 
range element information item is defined in an external XML 
Schema. And if the attribute does not contain a namespace 
prefix, the range element information item is specified in the 
input XML Schema and therefore the ontology IRI is set to 
‘<base ontology IRI>/<local ontology IRI>.owl’. 

The class identifier of the range element information item 
is determined by calling the named template ‘getNotContained 
RangeElementInformationItemIdentifier’ with the names of 
the range element information item and the corresponding 
meta-element information item as parameters. If an attribute 
includes a namespace prefix, the referenced range element 
information item is defined in an external XML Schema. In 
this case, the range element information item’s identifier is set 
to ‘<range element information item [without namespace 
prefix]>-<Range meta-element information item>_<external 
local ontology IRI>-Schema’, since it is always referenced to 
top-level element information items situated in external XML 
Schemas. If, however, attributes do not contain namespace 
prefixes, the global range element information items are 
specified in the input XML Schemas and therefore the 
identifiers of the range element information items are set to 
‘<range element information item>-<Range meta-element 
information item>_<local ontology IRI>-Schema’.  

It is assumed that references point to top-level element 
information items. 'key' (referenced by the attribute ‘refer’ of 
the element information item ‘keyref’) is the only referenced 
element information item which is not located at the global 
position in an XML Schema. But as element information items 
'key' have to be unique in an XML Schema, the identifiers can 
also be set as if they would be top-level element information 
items: <range element information item>-Key_<local 
ontology IRI>-Schema. And because of this, it can be 
referenced to XML Schema unique element information items 
'key' as if they would be top-level element information items. 
If referenced keys are defined in external XML Schemas, the 
target namespaces of the input XML Schema and of the 
external XML Schema have to be identical. Thus, the local 
ontology IRI can be used to identify the external XML 
Schema in which the key is defined. As element information 
items ‘key’ are named like top-level element information 
items, external XML Schemas do not have to be traversed to 
locate the element information items containing the keys. 

If type definitions, specified in external XML Schemas, 
are referenced, the type definitions' class identifiers have to be 
determined. The meta-element information item’s name is one 
part of the type definitions' class identifiers. If specific meta-
element information items like ‘SimpleType’ or 
‘ComplexType’ serve as the meta-element information item 
parts of the type definitions' class identifiers, the 
corresponding external XML Schemas, in which the type 
definitions are specified, have to be traversed. And if, in 
contrast, the general meta-element information item 'Type' 
serves as the meta-element information item part of the type 
definitions' class identifiers, the corresponding external XML 
Schemas do not have to be traversed. An obligatory traversing 
of external XML Schemas’ XML document trees would be 

critical, since in many cases, external XML Schemas cannot 
be available physically and namespaces can be imported using 
arbitrary values of ‘schemaLocation’ attributes. Because of 
these reasons, the type definitions' class identifiers’ meta-
element information item parts ‘AnySimpleType’, 
‘SimpleType’, and ‘ComplexType’ are set to ‘Type’. ‘Type’ is 
the super-class representing the general meta-element 
information item of the sub-classes standing for the more 
specific meta-element information items of type definitions 
(i.e. simple ur-type, simple type and complex type 
definitions).   

2) Subsequent definition of range element information 
items is necessary 

a) Transformation of XML Schemas’ element 
information items’ part-of relationships 

Element information items’ part-of relationships are 
realized by XML Schema Metamodel Ontology’s object 
properties’ universal restrictions <domain element information 
item> ⊑ ∀ contains_<domain meta-element information 
item>_<range meta-element information item>.<union of 
range element information items>. If the input XML Schema’s 
root element includes only one ‘element’ element information 
item (<xs:schema … ><xs:element name="element1"/> 
</xs:schema>), the range of the object property can only 
consist of individuals of one class (<local ontology IRI>-
Schema ⊑ ∀ contains_ Schema_Element.element1-
Element_<local ontology IRI>-Schema). If element 
information items like ‘schema’ have more than one element 
information item as content (<xs:schema … ><xs:element 
name="element1"/> <xs:element name="element2"/> 
</xs:schema>), the domain element information items can 
only have relationships along the object property to 
individuals of the complex class consisting of the union of 
individuals of multiple classes representing the contained 
range element information items (<local ontology IRI>-
Schema ⊑ ∀ contains_Schema_Element.(element1-Element_ 
<local ontology IRI>-Schema ⊔ element2-Element_<local 
ontology IRI>-Schema)). 

For each XML Schema Metamodel Ontology’s object 
property ‘contains_<domain meta-element information 
item>_<range meta-element information item>’ defined for 
the actual domain element information item’s associated meta-
element information item, the template ‘universalRestriction 
OnObjectPropertyContainedRangeElementInformationItems’ 
is called by passing the names of the object property and of 
the current domain element information item as parameters. 
As the template is called for each object property 
‘contains_<domain meta-element information item>_<range 
meta-element information item>’ of the actual domain element 
information item, it is tested, if the current domain element 
information item really includes the range element information 
items of the given range meta-element information item. Only 
in this case, the universal restriction on the object property is 
defined.  

 
 



b) Definition of range element information items’ class 
identifiers and ontology IRIs 

In order to store a string sequence of all the range element 
information items’ names of the given range meta-element 
information item contained in the actual domain element 
information item in a variable, it is iterated over these range 
element information items. The template ‘getContained 
RangeElementInformationItemIdentifier’ is invoked for each 
contained range element information item with the names of 
the range meta-element information item and the current 
domain element information item as formal parameters.  

Range element information items may have an associated 
name, may be references to top-level, global element 
information items, or may be contained without an identifier. 
Range element information items, having the attribute ‚name‘, 
are named according to the pattern ‚<range element 
information item>-<Range meta-element information 
item>_<domain element information item>’ (e.g. 
<xs:simpleType name="st3"> is converted to st3-
Type_<domain element information item>). As element 
information items ‘key’ have to be unique in an XML Schema, 
their identifiers are determined as if they would be top-level 
element information items: <range element information item>-
Key_<local ontology IRI>-Schema.  

Range element information items, which do not have an 
associated name, may have an attribute ‘ref’. If the attribute 
‘ref’ contains a namespace prefix, the referenced element 
information item is defined in an external XML Schema and 
the input XML Schema’s range element information item’s 
identifier is set to ‘<range element information item [without 
namespace prefix]>-<Range meta-element information item>-
Reference<position()>-<namespace URI>_<domain element 
information item> (e.g. <xs:attribute ref="xml:lang"/> is 
transformed to lang-Attribute-Reference<position>-
http://www.w3.org/XML/1998/namespace_<domain element 
information item>). The namespace URI is part of the 
identifier, as references to top-level element information items 
defined in different namespaces are possible (e.g. <xs:attribute 
ref="lang"/> and <xs:attribute ref="xml:lang"/>). Identifiers 
without namespace URI statements would not be unique. 
Domain element information items may include multiple 
range element information items of the same meta-element 
information item with identical ‘ref’ attribute values (e.g. 
<xs:extension…><xs:attributeGroup ref="ag1"/><xs:attribute 
Group ref="ag1"/></xs:extension>).  To ensure the unique-
ness of range element information items’ identifiers, their 
positions within the domain element information item have to 
be part of their identifiers. If the attribute ‘ref’ does not 
include a namespace prefix, the referenced element 
information item is specified in the input XML Schema and 
the name of the input XML Schema’s referencing element 
information item is determined as ‘<range element 
information item>-<Range meta-element information item>-
Reference<position()>_<domain element information item> 
(e.g. <xs:attribute ref="a3"/> is translated into a3-Attribute-
Reference<position>_<domain element information item>). 

As domain element information items may include 
multiple range element information items, which have no 
attributes ‘name’ or ‘ref’, of the same meta-element 
information item, these range element information items will 
be identified using sequential numbers: <Range meta-element 
information item><position()>-<Range meta-element 
information item>_ <domain element information item> (e.g. 
<xs:schema><xs:annotation/><xs:annotation/></xs:schema> 
is transformed into Annotation1-Annotation_<local ontology 
IRI>-Schema and Annotation2-Annotation_<local ontology 
IRI>-Schema). If simple or complex type definitions are 
included, the first range meta-element information item part of 
the identifier is set to the more specific type definition 
‘SimpleType’ or ‘ComplexType’ and the second range meta-
element information item part of the name is set to the super-
class representing the more general type definition ‘Type’ 
(e.g. SimpleType1-Type_<domain element information 
item>), in order to distinguish simple and complex type 
definitions.     

A variable stores the string sequence of IRIs of the 
ontologies in which the individual range element information 
items of the given range meta-element information item are 
defined. To realize this, the template ‘getContained 
RangeElementInformationItemOntologyIRI’ is called for each 
range element information item. As contained rage element 
information items are always specified in the input XML 
Schema, the ontology IRI is determined as ‘<base ontology 
IRI>/<local ontology IRI>.owl’.  

c) Definition of universal restrictions on object 
properties  

To specify the universal restriction on the given object 
property, the XSLT processor invokes the general template 
‚universalRestrictionOnObjectProperty‘ with the name of the 
object property and the two string sequences consisting of the 
range element information items’ identifiers and the associated 
ontology IRIs as parameters. As the active domain element 
information item may contain one or multiple range element 
information items of the same meta-element information item, 
the class corresponding to the actual domain element 
information item can only have ‚contains_<domain meta-
element information item>_<range meta-element information 
item>‘ relationships with one specific class representing a 
range element information item or with a union of specific 
classes standing for contained element information items. 

d) Definition of range element information items 
As contained element information items are referenced in 

definitions of universal restrictions on the object properties 
‘contains_<domain meta-element information item><range 
meta-element information item>’, the range element 
information items have to be defined as well by invoking the 
template ‘rangeElementInformationItemsDefinition’ with the 
object property’s name and the domain element information 
item’s identifier as parameters. For each range element 
information item of the given range meta-element information 
item (e.g. for each global complex type definition contained in 
the input XML Schema’s root element ‘schema’), the range 
element information item’s identifier is determined as shown 



before and the template named after the range meta-element 
information item is invoked recursively in order to define each 
range element information item of the given meta-element 
information item. The range meta-element information item 
and the range element information item serve as parameters. 
After the template is invoiced, the passed range element 
information item is then the current domain element 
information item, which is now at the actual position in the 
process traversing the XML Schema’s document tree. 

V. RELATED WORK 

Several strategies lifting the syntactic level of XML 
documents to the semantic level of OWL ontologies can be 
distinguished. The authors have clustered appropriate tools 
implementing these transformations into three classes 
depending on the kind of conversion either on the instance, the 
conceptual, or both the instance and the conceptual level.  

On the instance level, Klein has developed the so-called 
RDF Schema mapping ontology enabling a one-way mapping 
of XML documents to RDF. Relevant XML documents’ 
content can be identified [7]. As extension to this approach, 
Battle has introduced a bidirectional mapping of XML 
components to RDF [8]. The WEESA system implements an 
automatic transformation from XML to RDF using an OWL 
ontology, manually created from corresponding XML Schemas 
and manually defined rules. XML document instances are not 
mapped to OWL equivalents [9]. O’Connor and Das developed 
an approach transforming XML documents to individuals of an 
OWL ontology describing the serialization of the XML 
document. SWRL [10] is used to map these instances to 
individuals of a domain ontology [11].  

On the conceptual level you can distinguish between 
approaches converting XML schema languages to RDFS or 
OWL. Several languages for writing schemas like DTD [1], 
XML Schema [6], DSD [12] and Relax NG [13] exist. The 
prototype OntoLiFT [14] offers a generic means for converting 
arbitrary XML schema languages to RDFS ontologies semi-
automatically. In a first step, XML schema languages are 
transformed into regular tree grammars consisting of non-
terminals, terminals, start symbols and production rules [15]. In 
a second step, non-terminals as well as terminals are converted 
to RDFS classes and production rules are mapped to RDF 
properties. In comparison with our approach, OntoLiFt 
converts any XML schema language and not just the specific 
one XML Schema to ontologies. Anicic et al. evolved an 
approach based on meta-models transforming between the 
different models of XML Schema and OWL [16]. 

On the instance and the conceptual level, there are methods 
transforming XML to RDF and XML Schema to either RDFS 
or OWL. Within the EU-funded project called ‘Harmonise’ the 
interoperability of existing standards for the exchange of 
tourism data has been achieved by the transformation of  XML 
documents and XML Schemas into RDF and RDFS ontologies 
which have been mapped to each other [17]. Using the 
approach of O’Connor and Das [18], XML document instances 
are transformed to OWL ontologies even though associated 
XML Schemas not exist. As a consequence, unstructured 
contents can be mapped to OWL ontologies as well. XML 

Schemas can also be mapped to OWL ontologies, as XML 
Schema documents are represented in XML, too. New OWL 
ontologies can be generated from scratch and existing ones can 
be extended. O’Connor and Das evolved XML Master, a 
language describing OWL ontologies declaratively. XML 
Master combines the Manchester OWL Syntax [19] and XPath 
[20] to refer to XML content. O’Connor and Das criticize the 
limited and unsatisfactory number of OWL constructs 
supported by current tools converting XML Schemas to OWL 
ontologies. Thus, all OWL constructs are covered. One 
shortcoming associated with this method is that you have to 
write mapping language expressions manually and therefore 
you cannot transform XML documents and XML Schemas to 
OWL ontologies automatically. Another drawback is that 
ontology engineers have to be familiar with the Manchester 
OWL Syntax and XPath in order to express the mappings. 
Ferdinand et al. propose both mappings from XML to RDF and 
XML Schema to OWL which are independent of each other. 
This means, OWL individuals do not necessarily correspond to 
the OWL conceptual model, since XML documents’ 
declarations and definitions may be transferred to differing 
OWL constructs [21]. In addition, another system can be stated 
transferring XML Schema components to OWL language 
constructs at the terminological level and XML document 
instances to OWL individuals at the assertional level. XPath 
expressions are applied selecting XML documents’ content 
[22]. Besides that, the approach of Tous et al. is very similar to 
this method [23]. The authors of [24] devised a mapping 
between XML and RDF and between XML Schema and OWL 
.The authors assume that XML documents are structured like 
relational databases. Thus, XML documents’ relational 
structures are discovered and represented in OWL. Relations 
correspond to classes, columns to properties, and rows to 
instances. XML data model elements are mapped automatically 
to components of the OWL data model. Named simple and 
complex types, for instance, are transferred to classes. 
Elements, containing other elements or having at least one 
attribute, are converted to classes and object properties between 
these classes. Both, elements, including neither attributes nor 
sub-elements, and attributes, assumed representing database 
columns, are transformed into datatype properties with the 
surrounding element as domain. Besides, XML cardinality 
constraints are transformed into equivalent OWL cardinality 
restrictions. 

Compared with former general-purpose tools for translating 
XML Schemas into OWL ontologies, the approach presented 
in this paper converts XML Schemas into OWL ontologies on 
the basis of the XML Schema meta-model [6]. As this 
approach regards each meta-element information item of the 
XML Schema for XML Schemas, any XML Schemas can be 
transformed into OWL ontologies completely automatically. 
Many approaches try extracting semantics from XML 
Schemas. The suggested approach, in contrast, only gains 
information about the syntactic structure of XML document 
instances contained in XML Schemas. Generated ontologies 
are connected with domain ontologies which are enriched with 
semantic domain specific information in a further step. The 
majority of the tools attempt to convert either schemas to 
ontologies on the conceptual level or XML to RDF on the 
instance level. The method, presented in this paper, follows a 



complete approach transforming XML document instances’ 
content to OWL individuals as well as XML Schemas to OWL. 
In comparison with our approach, many attempts transform 
XML to RDF and/or XML schema languages to ontologies in a 
manual or at most in a semi-automatic and not automatic 
manner. Furthermore, divers existent methods generate RDFS 
ontologies and not the more expressive OWL ontologies. 

VI. CONCLUSION 

The ontology design process is sped up significantly when 
XML Schemas are transformed automatically into generated 
ontologies. The authors introduced the implementation of the 
developed generic multilevel approach designing domain 
ontologies based on XML Schemas using XSLT 
transformations. Both the terminology and the syntactic 
structure of domain data models are mapped to generated 
ontologies. The generated ontologies are linked to domain 
ontologies in order to supplement the information about terms 
and document structures located in the XML Schemas with 
domain specific semantic information.   

VII. FUTURE WORK 

The authors will develop an XSLT framework to 
implement a complete approach generating OWL ontologies 
stylesheet-driven. So far, XSLT transformations build 
generated ontologies automatically based on arbitrary XML 
Schemas. Moreover, the authors will write XSLT 
transformations transforming XML documents without 
corresponding XML Schemas, determining their syntactic 
structure, into generated ontologies. The first step is creating 
suitable XML Schemas out of XML document instances 
automatically. These XML Schemas will then be converted to 
generated ontologies in a second step. Another XSLT 
stylesheet will convert XML document instances’ data to OWL 
instances according to the generated ontologies. Generated 
ontologies and corresponding XML Schemas will be derived 
automaticly from designed domain ontologies using XSLT 
transformations. These scripts will be evolved realizing the 
model-driven development of generated ontologies and 
underlying XML Schemas associated with the domain 
ontologies.  

REFERENCES 

 
[1] Extensible Markup Language (XML) 1.0 (fifth edition) - W3C 

recommendation 26 November 2008, http://www.w3.org/TR/2008/REC-
xml-20081126/. 

[2] XML Schema part 0: primer second edition - W3C recommendation 28 
October 2004, http://www.w3.org/TR/2004/REC-xmlschema-0-
20041028/. 

[3] Linked Data, http://linkeddata.org. 

[4] The XML data model, http://www.w3.org/XML/Datamodel.html. 

[5] Resource Description Framework (RDF): concepts and abstract syntax, 
http://www.w3.org/TR/2002/WD-rdf-concepts-20021108/. 

[6] XML Schema part 1: structures second edition – W3C recommendation 
28 October 2004, http://www.w3.org/TR/xmlschema-1/. 

[7] M.C.A. Klein, “Interpreting XML documents via an RDF Schema 
ontology,” in 13th International Workshop Database and Expert 
Systems Applications, Aix-en-Provence, 2002. 

[8] S. Battle, “Gloze: XML to RDF and back again,” in 1st Jena User Conf., 
Bristol, 2006. 

[9] G. Reif, H. Gall, and M. Jazayeri, “WEESA - web engineering for 
Semantic Web applications,” in 14th World Wide Web Conf., Chiba, 
2005. 

[10] SWRL: a Semantic Web Rule Language combining OWL and RuleML, 
http://www.w3.org/Submission/SWRL/. 

[11] M.J. O'Connor and A.K. Das, “Semantic reasoning with XML-based 
biomedical information models,” in 13th World Congr. Medical 
Informatics, Cape Town, 2010. 

[12] N. Karlund, A. Moller, and M.I. Schwartzbach, “DSD: a schema 
language for XML,” in ACM SIGSOFT Workshop Formal Methods in 
Software Practice, 2000.   

[13] J. Clark, J. Cowan, M. Fitzgerald, J. Kawaguchi, J. Lubell, M. Murata, 
N. Walsh, and D. Webber, “Information technology – document schema 
definition language (DSDL) – part 2: regular-grammar-based 
validation,” – RELAX NG. ISO/IEC 19757-2:2003(E), 2003.   

[14] R. Volz, D. Oberle, S. Staab, and R. Studer, “OntoLiFT Prototype – 
WonderWeb: ontology infrastructure for the Semantic Web,” Karlsruhe, 
2003. 

[15] M. Murata, D. Lee, M. Mani, and K. Kawaguchi, “Taxonomy of XML 
schema languages using formal language theory,” in ACM Transactions 
Internet Technology, vol. 5, New York, 2005. 

[16] N. Anicic, N. Ivezic, and Z. Marjanovic, “Mapping XML Schema to 
OWL,” in Enterprise Interoperability, Part V, Springer, Berlin, 2007, 
pp. 243-252. 

[17] M. Dell’Erba, O. Fodor, F. Ricci, and H. Werthner, “Harmonise: a 
solution for data interoperability,” in Proc. 2nd IFIP Conf. E-Commerce, 
E-Business, E-Government I3E, 2002. 

[18] M.J. O’Connor, A.K. Das, “Acquiring OWL ontologies from XML 
documents,” in Proc. 6th Int. Conf. Knowledge Capture, New York 
2011. 

[19] OWL 2 Web Ontology Language Manchester Syntax, 
http://www.w3.org/TR/owl2-manchester-syntax/. 

[20] XML Path Language (XPath) 2.0 (second edition), 
http://www.w3.org/TR/xpath20/. 

[21] M. Ferdinand, C. Zirpins, and D. Trastour, “Lifting XML Schema to 
OWL,” in Web Engineering - 4th Int. Conf., Munich, 2004.  

[22] N. Kobeissy, M.G. Genet, and D. Zeghlache, “Mapping XML to OWL 
for seamless information retrieval in context-aware environments,” in 
Int. Conf. Pervasive Services, Istanbul, 2007. 

[23] R. Tous, R. Garcia, E. Rodriguez, and J. Delgado, “Architecture of a 
semantic XPath processor. Application to digital rights management,” in 
6th E-Commerce and Web Technologies, Copenhagen, 2005. 

[24] H. Bohring, S. Auer, “Mapping XML to OWL Ontologies,” in Leipziger 
Informatik Tage, vol. 72, Leipzig, 2005.  

 


