
XSLT Transformation Generating OWL Ontologies
Automatically Based on XML Schemas

Thomas Bosch, Brigitte Mathiak
Monitoring Society and Social Change

GESIS – Leibniz Institute for the Social Sciences
Mannheim, Germany

Thomas.Bosch@gesis.org, Brigitte.Mathiak@gesis.org

Abstract—Designing domain ontologies from scratch is a time-
consuming process. In many cases, both the terminologies and
the syntactic structures of domain data models are already
described in form of XML Schemas. XSLT transformations are
used to lift the syntactic level of XML documents to the semantic
level of OWL ontologies by mapping any XML Schemas to
generated ontologies automatically. Ontology engineers base
domain ontologies on generated ontologies to enrich the
information located in the XML schemas with additional domain
specific semantic information. The aim of this paper is to show
the implementation of the general approach transforming any
XML Schemas into generated ontologies automatically using
XSLT.

Keywords-XSLT, OWL, XML Schema

I. INTRODUCTION

XML [1] documents are commonly used to store and
transfer information in distributed environments. XML
documents may be instances of XML Schemas [2] determining
their terminology and syntactic structure. XML represents a
large set of information within the context of various domains
and has reached wide acceptance as standard data exchange
format in e-business. This objective fact has driven the
development of general-purpose tools for converting XML
Schemas to OWL ontologies. Both data and metadata,
structured by ontologies, can be published in the increasingly
popular and widely adopted LOD cloud to get linked with a
huge number of other RDF datasets [3]. As RDF is an
established standard, there is a plethora of tools which can be
used to interoperate with data and metadata represented in
RDF.

XML Schema and OWL follow differing modeling goals.
On the one hand, the XML data model describes the
terminology and the syntactic structure of XML documents, a
node labeled tree [4]. OWL, otherwise, is based on formal
logic and on the subject-predicate-object triples from RDF [5].
OWL specifies semantic information about specific domains
of interest, describes relations between domain classes and
thus allows the sharing of conceptualizations. An effective and
efficient cooperation between e-business partners is only
possible if they agree on a common syntax (specified by XML
Schemas) and have a common understanding of the domain

classes (defined by OWL ontologies). The authors of this
paper attempt to bridge the gap between XML Schema and
OWL by lifting the syntactic level of XML documents to the
semantic level of OWL ontologies.

II. PROBLEM

The process developing domain ontologies is very time-
consuming. XML Schemas describing specific domains are
often existent in early stages of the ontology design process.
The traditional procedure is to transfer the information located
in XML Schemas of certain data models to OWL ontologies
manually, which requires a lot of time. Saved time could be
used more effective to extend the knowledge expressed in the
XML Schemas in order to enrich the data models with
supplementary domain specific information. In this paper, the
authors describe the implementation of a generic multilevel
approach accelerating the process designing domain
ontologies from scratch based on already available XML
Schemas. The intention of this approach is to create generated
ontologies completely automatically based on any XML
Schemas, expressing domain data models, using XSLT
transformations. The direct mapping from XML and XML
Schema to RDF and OWL is not sufficient, since it only
transports information about the terminology and the syntactic
structure of XML document instances. Semantic information
has to be added in a further step. Initially generated ontologies
are connected to domain ontologies using equivalence
relationships. Thus, ontology engineers, collaborating with
experts of given domains, enrich domain ontologies with
additional semantics not or not satisfyingly covered by the
underlying XML Schemas. Domain experts as well as
ontology engineers enhance domain ontologies with further
semantic information needed for tasks typically performed in
particular domains.

Compared with previous general-purpose tools for
transforming XML Schemas into OWL ontologies, the novelty
of the developed approach is that the translation of XML
Schemas into OWL ontologies is based on the XML Schema
for XML Schemas, the XML Schema meta-model [6]. As this
approach considers each component of the XML Schema
abstract data model, unexceptionally any XML Schema can be
transformed into an OWL ontology in a totally automatic
manner without any manual adaption after the translation

process. Most tools try extracting semantics directly out of
XML Schemas. The suggested approach, in contrast, only
gains information about the terminology and the syntactic
structure of XML document instances contained in XML
Schemas. Semantic domain specific information is associated
to domain ontologies in a next step.

III. GENERIC MULTILEVEL APPROACH DESIGNING DOMAIN

ONTOLOGIES BASED ON XML SCHEMAS

Figure 1 sketches the devised concept of the generic
multilevel approach designing domain ontologies based on
XML Schemas.

Figure 1. Generic multilevel approach designing domain ontologies based on
XML Schemas.

The main goal of this approach is that XSLT
transformations map any XML Schemas to generated
ontologies automatically without subsequent manual
adaptations. The components of the XML Schema abstract data
model [6], also called element information items in the XML
representation, are mapped directly to classes of the XML
Schema Metamodel Ontology. This generic ontology consists
of super-classes of the generated ontologies’ classes, datatype
properties, object properties and universal restrictions on both
property types. The generated ontologies’ classes correspond to
element information items located in the XML Schemas.
Generated ontologies and external ontologies are related to
domain ontologies via class equivalence relationships. As a
consequence, domain ontologies contain all the information
located in the XML Schemas of particular domains. After the
process translating XML Schemas into generated OWL
ontologies, ontology engineers collaborate with domain experts
in order to add supplementary semantic information, not
expressed in the underlying XML Schemas, to domain
ontologies.

IV. AUTOMATIC GENERATION OF OWL ONTOLOGIES

BASED ON XML SCHEMAS USING XSLT TRANSFORMATIONS

A. Definition of RDF Document Header Information

RDF documents consist of a header and an ontology. The
RDF document header information, including an XML
declaration, an optional document type declaration, an RDF
document header, and an OWL document header, is specified
by invoicing appropriate templates within the template for the
document node representing the input XML Schema. The file
extension of the output file is set to ‘.owl’, since OWL
documents, which are RDF documents as well, are generated.
The XML declaration includes the XML version and the
character set, the encoding of the RDF document’s content.
The document type declaration contains internal entity
declarations specifying abbreviations for long namespace URI
strings used in the RDF document. The RDF document header
defines the default namespace of the RDF document, the base
URL, as well as the XML Schema, RDF, RDFS, OWL, and
XML Schema Metamodel Ontology’s namespace prefixes.
The OWL document header includes the statements of the
ontology IRI, the ontology version IRI as well as the
instruction importing the XML Schema Metamodel
Ontology's classes, datatype properties, object properties, and
class axioms.

The ontology IRI is set to ‘<base ontology IRI>/<local
ontology IRI>.owl’ and is used to identify the ontology in the
context of the WWW. The ontology IRI represents the URL
where the latest version of the ontology is published. The base
ontology IRI is defined as ‘http://www.semanticweb.org/
ontologies/XMLSchemaOntologies’. The local part of the
ontology IRI is determined as follows: The XML Schema’s
element information items are specified in the target
namespace of this XML Schema. If the target namespace of
the current XML Schema is stated, this information is used as
local ontology IRI. As the target namespace is not a
mandatory attribute of XML Schemas’ root elements, a user-
defined local ontology IRI can also be passed to the translation
process as input parameter. Finally, if there is neither a target
namespace specified nor a user-defined local ontology IRI
delivered, the file name of the input XML Schema serves as
local part of the ontology IRI.

The ontology version IRI corresponds to ‘<base ontology
IRI>/<local ontology IRI>:<local ontology version IRI>.owl’
and represents the URL where a given version of the ontology
is published. Initially, the local part of the ontology version
IRI, representing the version of the ontology the input XML
Schema is mapped to, is set to ‘1.0.0’. Minor changes of the
generated ontologies and the underlying XML Schemas will
cause adjustments of the last two version levels and major
ontology changes will cause modifications of the first version
stage. After the definition of the RDF document header
information and the ontology, the RDF document is closed by
calling an appropriate template.

B. Traversing the XML Schema’s Document Tree

After the definition of the RDF document header
information, the generated ontology representing the input
XML Schema is specified by invoicing the template
‘ontologyDefinition’. This template serves as starting point to
traverse the XML Schema’s document tree in order to
implement the mappings between the input XML Schema and
the generated ontology beginning with the XML Schema’s
root element ‘schema’.

Each element information item located in the input XML
Schema is mapped to the generated ontology by calling a
template named according to the appropriate XML Schema
Metamodel Ontology’s super-class representing the
corresponding meta-element information item (e.g. ‘Schema’
to define the class corresponding to the element information
item ‘schema’). As the element information item ‘schema’ is
always the root element of any XML Schema, the XSLT
processor calls the template ‘Schema’ first.

 Element information items may contain other element
information items. Part-of-relationships have been converted
to object properties ‚contains_<domain meta-element
information item>_<range meta-element information item>‘
in the XML Schema Metamodel Ontology. Containing
element information items are in the domain of these object
properties, contained element information items in the range.
As, for instance, element information items ‚schema‘ may
contain complex type definitions, the object property
‚contains_Schema_ComplexType‘ has been defined in the
XML Schema Metamodel Ontology.

 After invoicing the template ‘Schema’, the XML
Schema’s root element is located at the actual position of the
process traversing the XML Schema’s document tree. At this
time, the root element stands for the actual domain element
information item, which may include multiple range element
information items as content. After the mapping of the actual
domain element information item to an equivalent class of the
generated ontology, the contained range element information
items have to be defined by calling appropriate templates
representing the meta-element information items they belong
to. As the element information item ‘schema’ may include
complex type definitions, the template ‘ComplexType’ is
invoiced for each top-level complex type definition. Then,
each active complex type definition stands for the current
domain element information item which is situated at the
actual position of the traversing process. When a range
element information item should be defined, the template
named according to the appropriate meta-element information
item is called with the two parameters containing the name of
the range meta-element information item (e.g.
‘ComplexType’) and the name of the range element
information item. After the template is invoiced, the range
meta-element information item is the current domain meta-
element information item and the range element information
item is the actual domain element information item, since the
domain element information item is now located at the current
position of the XML Schema’s document tree traversing
process. If the root element of the input XML Schema

includes the complex type definition ‘ComplexType1’, for
instance, this complex type definition is defined by invoking
the template ‘ComplexType’ with ‘ComplexType’ as the new
domain meta-element information item parameter and
‘ComplexType1-Type_<local ontology IRI>-Schema’ as the
new domain element information item parameter.

The identifier of the current domain element information
item is built hierarchically containing all the ancestor element
information items’ names and the name of the actual domain
element information item. The ancestor element information
items include the actual domain element information item
either directly or indirectly. The XML Schema’s root
element’s identifier is the rightmost part of the actual domain
element information item’s name. As a consequence, the
names of the active domain element information items are
built recursively. The input XML Schema’s identifier is set to
<local ontology IRI>-Schema (e.g. inputXMLSchema-Schema
for the input XML Schema with the target namespace
‘inputXMLSchema’). The containing ancestor element
information items, contributing to the overall identifier of the
current domain element information item, are separated by the
underscore character. Each element information item’s
associated meta-element information item is also part of the
entire identifier, separated from the individual element
information item by the negative sign. If the complex type
definition called ‘ComplexType1’, for example, is contained
in the input XML Schema’s root element with the target
namespace ‘inputXMLSchema’, the class with the identifier
’ComplexType1-Type_inputXMLSchema-Schema’ is added
to the generated ontology.

C. Definition of domain element information items as sub-
classes of XML Schema Metamodel Ontology’s super-
classes

Classes, standing for domain element information items
located at the current position in the process traversing the
XML Schema’s document tree, are specified by invoking the
named template ‘classDefinition’ with the local ontology IRI
and the current hierarchically built domain element
information item’s name as formal parameters. Fully qualified
classes’ identifiers are determined according to the pattern
‚<base ontology IRI>/<local ontology IRI>.owl#<local class
identifier>‘. The local class identifier always refers to the
name of the current domain element information item. In this
paper, the abbreviated term ‘class identifier’ is used, which is
equivalent to the term ‘local class identifier’. To resolve fully
qualified class identifiers, ‚<base ontology IRI>/<local
ontology IRI>.owl#’ has to be added in front of the local class
identifiers.

XML Schemas’ element information items are mapped to
sub-classes of the XML Schema Metamodel Ontology’s
super-classes (<element information item> ⊑ <meta-element
information item>, e.g. Element1-Element_<local ontology
IRI>-Schema ⊑ Element) by invoking the template
‘superClassDefinition’ with the XML Schema Metamodel
Ontology’s super-class representing the meta-element
information item as parameter.

D. Definition of hasValue restrictions on XML Schema
Metamodel Ontology’ datatype properties

Values of element information items’ attributes and any
well-formed XML content included in the element information
items ‘Appinfo’ and ‘Documentation’ are transformed into
XML Schema Metamodel Ontology’s datatype properties’
hasValue restrictions <domain element information item> ⊑
∃ <attribute>|any_<domain meta-element information
item>_String.{<String>}, as the domain element information
item is the sub-class of the anonymous super-class of all the
individuals which have at least one relationship along the
datatype property ‘<attribute>|any_<domain meta-element
information item>_String‘ to the specified individual of the
primitive datatype ‘string’.

To define datatype property hasValue restrictions for the
actual domain element information item, the named template
‘hasValueRestrictionOnDatatypeProperty’ is invoked with the
name of the datatype property (e.g. ‘name_ComplexType_
String’ or ‘any_Documentation_String’) and the hasValue
restriction, which is either the attribute value of the actual
domain element information item (e.g. ‘./@name’) or the
current node (‘.’), as parameters. The presence of the optional
attributes and element information items’ XML contents is
checked before the datatype property hasValue restriction can
be defined.

If hasValue restrictions on the datatype properties
‘any_<Appinfo|Documentation>_String’ have to be defined,
the default template for element nodes with the template mode
‘any’ is invoked. The sequence, transmitted to this template,
encompasses the current node representing the actual domain
element information item ‘appinfo‘ or ‘documentation‘. The
element nodes ‘<XML Schema namespace prefix>:
<appinfo|documentation>‘ can include any well-formed XML
content (i.e. text nodes, element nodes, and element nodes‘
attributes). The XML content is added to the result tree
recursively by calling the element nodes’ default template
with the template mode ‘any’ for all the child and descendent
element nodes of the element information items ‘appinfo‘ and
‘documentation‘. The element nodes ‘appinfo‘ and
‘documentation‘ themselves are not part of the output tree. In
hasValue restrictions on datatype properties not allowed
characters (<, >, ") are escaped and the attribute and text nodes
for each actual child or descendent element node are also
appended to the output tree.

E. Definition of universal restrictions on XML Schema
Metamodel Ontology’ object properties

1) Subsequent definition of range element information
items is not necessary

a) Transformation of values of element information
item’s attributes referring to other element information items
or to type definitions

Values of element information items' attributes 'ref',
'substitutionGroup', and ‘refer’, referring to other element
information items, are converted to the XML Schema
Metamodel Ontology’s object properties’ universal restrictions
<domain element information item> ⊑ ∀

<ref|substitutionGroup|refer>_<domain meta-element infor-
mation item>_<range meta-element information item>.<range
element information item>. The reference to the element
information item ‘attribute’ called ‘a1’ (<xs:attribute
ref="a1"/>), for example, is transformed into the object
property universal restriction a1-Attribute-Reference
<position>_<domain element information item> ⊑ ∀
ref_Attribute_Attribute.a1-Attribute_<local ontology IRI>-
Schema.

Values of element information items' attributes 'type' and
'base', referring to type definitions, are transferred to XML
Schema Metamodel Ontology’s object properties’ universal
restrictions <domain element information item> ⊑ ∀
type|base_<domain meta-element information item>_
Type.<range element information item>. The value of the
attribute ‘type’ of the element information item ‘element’
named ‘element1’ (<xs:element name="element1"
type="ComplexType1"/>), for instance, is converted to the
object property’s universal restriction element1-
Element_<local ontology IRI>-Schema ⊑ ∀ type_Element_
Type.ComplexType1-Type_<local ontology IRI>-Schema.

b) Definition of universal restrictions on object
properties

Universal restrictions on these two object properties are
specified by invoking the template ‘universalRestrictionOn
ObjectPropertyNotContainedRangeElementInformationItems’
with the name of the object property (e.g.
‘ref_Attribute_Attribute’ or ‘type_Element_Type’), the
domain element information item’s identifier, and either the
name of the range element information item (e.g.
‘./@substitutionGroup’) or of the type definition (e.g.
‘./@base’), which represent the range element information
item part of the universal restriction, as parameters. As the
attributes, including the range element information items of
the object properties’ universal restrictions, are not mandatory,
the object properties’ universal restrictions can only be
defined if the attributes are present.

In order to specify the object properties’ universal
restrictions, the general template ‘universalRestrictionOn
ObjectProperty’ is called with the name of the object property,
the range element information item’s ontology IRI, and the
name of the range element information item as parameters.

The range element information items do not have to be
defined after the specification of the object properties’
universal restrictions, since classes, representing other element
information items or type definitions, are already defined or
will still be defined in the process traversing the XML
Schema’s document tree.

c) Definition of range element information items’ class
identifiers and ontology IRIs

As the range element information item can be defined in
an external XML Schema, the ontology IRI of the range
element information item has to be determined first by
invoicing the named template ‘getNotContainedRange
ElementInformationItemOntologyIRI’ with the range element
information item as formal parameter. If the attribute includes
a namespace prefix, the ontology IRI corresponds to ‘<base

ontology IRI>/<external local ontology IRI>.owl’, since the
range element information item is defined in an external XML
Schema. And if the attribute does not contain a namespace
prefix, the range element information item is specified in the
input XML Schema and therefore the ontology IRI is set to
‘<base ontology IRI>/<local ontology IRI>.owl’.

The class identifier of the range element information item
is determined by calling the named template ‘getNotContained
RangeElementInformationItemIdentifier’ with the names of
the range element information item and the corresponding
meta-element information item as parameters. If an attribute
includes a namespace prefix, the referenced range element
information item is defined in an external XML Schema. In
this case, the range element information item’s identifier is set
to ‘<range element information item [without namespace
prefix]>-<Range meta-element information item>_<external
local ontology IRI>-Schema’, since it is always referenced to
top-level element information items situated in external XML
Schemas. If, however, attributes do not contain namespace
prefixes, the global range element information items are
specified in the input XML Schemas and therefore the
identifiers of the range element information items are set to
‘<range element information item>-<Range meta-element
information item>_<local ontology IRI>-Schema’.

It is assumed that references point to top-level element
information items. 'key' (referenced by the attribute ‘refer’ of
the element information item ‘keyref’) is the only referenced
element information item which is not located at the global
position in an XML Schema. But as element information items
'key' have to be unique in an XML Schema, the identifiers can
also be set as if they would be top-level element information
items: <range element information item>-Key_<local
ontology IRI>-Schema. And because of this, it can be
referenced to XML Schema unique element information items
'key' as if they would be top-level element information items.
If referenced keys are defined in external XML Schemas, the
target namespaces of the input XML Schema and of the
external XML Schema have to be identical. Thus, the local
ontology IRI can be used to identify the external XML
Schema in which the key is defined. As element information
items ‘key’ are named like top-level element information
items, external XML Schemas do not have to be traversed to
locate the element information items containing the keys.

If type definitions, specified in external XML Schemas,
are referenced, the type definitions' class identifiers have to be
determined. The meta-element information item’s name is one
part of the type definitions' class identifiers. If specific meta-
element information items like ‘SimpleType’ or
‘ComplexType’ serve as the meta-element information item
parts of the type definitions' class identifiers, the
corresponding external XML Schemas, in which the type
definitions are specified, have to be traversed. And if, in
contrast, the general meta-element information item 'Type'
serves as the meta-element information item part of the type
definitions' class identifiers, the corresponding external XML
Schemas do not have to be traversed. An obligatory traversing
of external XML Schemas’ XML document trees would be

critical, since in many cases, external XML Schemas cannot
be available physically and namespaces can be imported using
arbitrary values of ‘schemaLocation’ attributes. Because of
these reasons, the type definitions' class identifiers’ meta-
element information item parts ‘AnySimpleType’,
‘SimpleType’, and ‘ComplexType’ are set to ‘Type’. ‘Type’ is
the super-class representing the general meta-element
information item of the sub-classes standing for the more
specific meta-element information items of type definitions
(i.e. simple ur-type, simple type and complex type
definitions).

2) Subsequent definition of range element information
items is necessary

a) Transformation of XML Schemas’ element
information items’ part-of relationships

Element information items’ part-of relationships are
realized by XML Schema Metamodel Ontology’s object
properties’ universal restrictions <domain element information
item> ⊑ ∀ contains_<domain meta-element information
item>_<range meta-element information item>.<union of
range element information items>. If the input XML Schema’s
root element includes only one ‘element’ element information
item (<xs:schema … ><xs:element name="element1"/>
</xs:schema>), the range of the object property can only
consist of individuals of one class (<local ontology IRI>-
Schema ⊑ ∀ contains_ Schema_Element.element1-
Element_<local ontology IRI>-Schema). If element
information items like ‘schema’ have more than one element
information item as content (<xs:schema … ><xs:element
name="element1"/> <xs:element name="element2"/>
</xs:schema>), the domain element information items can
only have relationships along the object property to
individuals of the complex class consisting of the union of
individuals of multiple classes representing the contained
range element information items (<local ontology IRI>-
Schema ⊑ ∀ contains_Schema_Element.(element1-Element_
<local ontology IRI>-Schema ⊔ element2-Element_<local
ontology IRI>-Schema)).

For each XML Schema Metamodel Ontology’s object
property ‘contains_<domain meta-element information
item>_<range meta-element information item>’ defined for
the actual domain element information item’s associated meta-
element information item, the template ‘universalRestriction
OnObjectPropertyContainedRangeElementInformationItems’
is called by passing the names of the object property and of
the current domain element information item as parameters.
As the template is called for each object property
‘contains_<domain meta-element information item>_<range
meta-element information item>’ of the actual domain element
information item, it is tested, if the current domain element
information item really includes the range element information
items of the given range meta-element information item. Only
in this case, the universal restriction on the object property is
defined.

b) Definition of range element information items’ class
identifiers and ontology IRIs

In order to store a string sequence of all the range element
information items’ names of the given range meta-element
information item contained in the actual domain element
information item in a variable, it is iterated over these range
element information items. The template ‘getContained
RangeElementInformationItemIdentifier’ is invoked for each
contained range element information item with the names of
the range meta-element information item and the current
domain element information item as formal parameters.

Range element information items may have an associated
name, may be references to top-level, global element
information items, or may be contained without an identifier.
Range element information items, having the attribute ‚name‘,
are named according to the pattern ‚<range element
information item>-<Range meta-element information
item>_<domain element information item>’ (e.g.
<xs:simpleType name="st3"> is converted to st3-
Type_<domain element information item>). As element
information items ‘key’ have to be unique in an XML Schema,
their identifiers are determined as if they would be top-level
element information items: <range element information item>-
Key_<local ontology IRI>-Schema.

Range element information items, which do not have an
associated name, may have an attribute ‘ref’. If the attribute
‘ref’ contains a namespace prefix, the referenced element
information item is defined in an external XML Schema and
the input XML Schema’s range element information item’s
identifier is set to ‘<range element information item [without
namespace prefix]>-<Range meta-element information item>-
Reference<position()>-<namespace URI>_<domain element
information item> (e.g. <xs:attribute ref="xml:lang"/> is
transformed to lang-Attribute-Reference<position>-
http://www.w3.org/XML/1998/namespace_<domain element
information item>). The namespace URI is part of the
identifier, as references to top-level element information items
defined in different namespaces are possible (e.g. <xs:attribute
ref="lang"/> and <xs:attribute ref="xml:lang"/>). Identifiers
without namespace URI statements would not be unique.
Domain element information items may include multiple
range element information items of the same meta-element
information item with identical ‘ref’ attribute values (e.g.
<xs:extension…><xs:attributeGroup ref="ag1"/><xs:attribute
Group ref="ag1"/></xs:extension>). To ensure the unique-
ness of range element information items’ identifiers, their
positions within the domain element information item have to
be part of their identifiers. If the attribute ‘ref’ does not
include a namespace prefix, the referenced element
information item is specified in the input XML Schema and
the name of the input XML Schema’s referencing element
information item is determined as ‘<range element
information item>-<Range meta-element information item>-
Reference<position()>_<domain element information item>
(e.g. <xs:attribute ref="a3"/> is translated into a3-Attribute-
Reference<position>_<domain element information item>).

As domain element information items may include
multiple range element information items, which have no
attributes ‘name’ or ‘ref’, of the same meta-element
information item, these range element information items will
be identified using sequential numbers: <Range meta-element
information item><position()>-<Range meta-element
information item>_ <domain element information item> (e.g.
<xs:schema><xs:annotation/><xs:annotation/></xs:schema>
is transformed into Annotation1-Annotation_<local ontology
IRI>-Schema and Annotation2-Annotation_<local ontology
IRI>-Schema). If simple or complex type definitions are
included, the first range meta-element information item part of
the identifier is set to the more specific type definition
‘SimpleType’ or ‘ComplexType’ and the second range meta-
element information item part of the name is set to the super-
class representing the more general type definition ‘Type’
(e.g. SimpleType1-Type_<domain element information
item>), in order to distinguish simple and complex type
definitions.

A variable stores the string sequence of IRIs of the
ontologies in which the individual range element information
items of the given range meta-element information item are
defined. To realize this, the template ‘getContained
RangeElementInformationItemOntologyIRI’ is called for each
range element information item. As contained rage element
information items are always specified in the input XML
Schema, the ontology IRI is determined as ‘<base ontology
IRI>/<local ontology IRI>.owl’.

c) Definition of universal restrictions on object
properties

To specify the universal restriction on the given object
property, the XSLT processor invokes the general template
‚universalRestrictionOnObjectProperty‘ with the name of the
object property and the two string sequences consisting of the
range element information items’ identifiers and the associated
ontology IRIs as parameters. As the active domain element
information item may contain one or multiple range element
information items of the same meta-element information item,
the class corresponding to the actual domain element
information item can only have ‚contains_<domain meta-
element information item>_<range meta-element information
item>‘ relationships with one specific class representing a
range element information item or with a union of specific
classes standing for contained element information items.

d) Definition of range element information items
As contained element information items are referenced in

definitions of universal restrictions on the object properties
‘contains_<domain meta-element information item><range
meta-element information item>’, the range element
information items have to be defined as well by invoking the
template ‘rangeElementInformationItemsDefinition’ with the
object property’s name and the domain element information
item’s identifier as parameters. For each range element
information item of the given range meta-element information
item (e.g. for each global complex type definition contained in
the input XML Schema’s root element ‘schema’), the range
element information item’s identifier is determined as shown

before and the template named after the range meta-element
information item is invoked recursively in order to define each
range element information item of the given meta-element
information item. The range meta-element information item
and the range element information item serve as parameters.
After the template is invoiced, the passed range element
information item is then the current domain element
information item, which is now at the actual position in the
process traversing the XML Schema’s document tree.

V. RELATED WORK

Several strategies lifting the syntactic level of XML
documents to the semantic level of OWL ontologies can be
distinguished. The authors have clustered appropriate tools
implementing these transformations into three classes
depending on the kind of conversion either on the instance, the
conceptual, or both the instance and the conceptual level.

On the instance level, Klein has developed the so-called
RDF Schema mapping ontology enabling a one-way mapping
of XML documents to RDF. Relevant XML documents’
content can be identified [7]. As extension to this approach,
Battle has introduced a bidirectional mapping of XML
components to RDF [8]. The WEESA system implements an
automatic transformation from XML to RDF using an OWL
ontology, manually created from corresponding XML Schemas
and manually defined rules. XML document instances are not
mapped to OWL equivalents [9]. O’Connor and Das developed
an approach transforming XML documents to individuals of an
OWL ontology describing the serialization of the XML
document. SWRL [10] is used to map these instances to
individuals of a domain ontology [11].

On the conceptual level you can distinguish between
approaches converting XML schema languages to RDFS or
OWL. Several languages for writing schemas like DTD [1],
XML Schema [6], DSD [12] and Relax NG [13] exist. The
prototype OntoLiFT [14] offers a generic means for converting
arbitrary XML schema languages to RDFS ontologies semi-
automatically. In a first step, XML schema languages are
transformed into regular tree grammars consisting of non-
terminals, terminals, start symbols and production rules [15]. In
a second step, non-terminals as well as terminals are converted
to RDFS classes and production rules are mapped to RDF
properties. In comparison with our approach, OntoLiFt
converts any XML schema language and not just the specific
one XML Schema to ontologies. Anicic et al. evolved an
approach based on meta-models transforming between the
different models of XML Schema and OWL [16].

On the instance and the conceptual level, there are methods
transforming XML to RDF and XML Schema to either RDFS
or OWL. Within the EU-funded project called ‘Harmonise’ the
interoperability of existing standards for the exchange of
tourism data has been achieved by the transformation of XML
documents and XML Schemas into RDF and RDFS ontologies
which have been mapped to each other [17]. Using the
approach of O’Connor and Das [18], XML document instances
are transformed to OWL ontologies even though associated
XML Schemas not exist. As a consequence, unstructured
contents can be mapped to OWL ontologies as well. XML

Schemas can also be mapped to OWL ontologies, as XML
Schema documents are represented in XML, too. New OWL
ontologies can be generated from scratch and existing ones can
be extended. O’Connor and Das evolved XML Master, a
language describing OWL ontologies declaratively. XML
Master combines the Manchester OWL Syntax [19] and XPath
[20] to refer to XML content. O’Connor and Das criticize the
limited and unsatisfactory number of OWL constructs
supported by current tools converting XML Schemas to OWL
ontologies. Thus, all OWL constructs are covered. One
shortcoming associated with this method is that you have to
write mapping language expressions manually and therefore
you cannot transform XML documents and XML Schemas to
OWL ontologies automatically. Another drawback is that
ontology engineers have to be familiar with the Manchester
OWL Syntax and XPath in order to express the mappings.
Ferdinand et al. propose both mappings from XML to RDF and
XML Schema to OWL which are independent of each other.
This means, OWL individuals do not necessarily correspond to
the OWL conceptual model, since XML documents’
declarations and definitions may be transferred to differing
OWL constructs [21]. In addition, another system can be stated
transferring XML Schema components to OWL language
constructs at the terminological level and XML document
instances to OWL individuals at the assertional level. XPath
expressions are applied selecting XML documents’ content
[22]. Besides that, the approach of Tous et al. is very similar to
this method [23]. The authors of [24] devised a mapping
between XML and RDF and between XML Schema and OWL
.The authors assume that XML documents are structured like
relational databases. Thus, XML documents’ relational
structures are discovered and represented in OWL. Relations
correspond to classes, columns to properties, and rows to
instances. XML data model elements are mapped automatically
to components of the OWL data model. Named simple and
complex types, for instance, are transferred to classes.
Elements, containing other elements or having at least one
attribute, are converted to classes and object properties between
these classes. Both, elements, including neither attributes nor
sub-elements, and attributes, assumed representing database
columns, are transformed into datatype properties with the
surrounding element as domain. Besides, XML cardinality
constraints are transformed into equivalent OWL cardinality
restrictions.

Compared with former general-purpose tools for translating
XML Schemas into OWL ontologies, the approach presented
in this paper converts XML Schemas into OWL ontologies on
the basis of the XML Schema meta-model [6]. As this
approach regards each meta-element information item of the
XML Schema for XML Schemas, any XML Schemas can be
transformed into OWL ontologies completely automatically.
Many approaches try extracting semantics from XML
Schemas. The suggested approach, in contrast, only gains
information about the syntactic structure of XML document
instances contained in XML Schemas. Generated ontologies
are connected with domain ontologies which are enriched with
semantic domain specific information in a further step. The
majority of the tools attempt to convert either schemas to
ontologies on the conceptual level or XML to RDF on the
instance level. The method, presented in this paper, follows a

complete approach transforming XML document instances’
content to OWL individuals as well as XML Schemas to OWL.
In comparison with our approach, many attempts transform
XML to RDF and/or XML schema languages to ontologies in a
manual or at most in a semi-automatic and not automatic
manner. Furthermore, divers existent methods generate RDFS
ontologies and not the more expressive OWL ontologies.

VI. CONCLUSION

The ontology design process is sped up significantly when
XML Schemas are transformed automatically into generated
ontologies. The authors introduced the implementation of the
developed generic multilevel approach designing domain
ontologies based on XML Schemas using XSLT
transformations. Both the terminology and the syntactic
structure of domain data models are mapped to generated
ontologies. The generated ontologies are linked to domain
ontologies in order to supplement the information about terms
and document structures located in the XML Schemas with
domain specific semantic information.

VII. FUTURE WORK

The authors will develop an XSLT framework to
implement a complete approach generating OWL ontologies
stylesheet-driven. So far, XSLT transformations build
generated ontologies automatically based on arbitrary XML
Schemas. Moreover, the authors will write XSLT
transformations transforming XML documents without
corresponding XML Schemas, determining their syntactic
structure, into generated ontologies. The first step is creating
suitable XML Schemas out of XML document instances
automatically. These XML Schemas will then be converted to
generated ontologies in a second step. Another XSLT
stylesheet will convert XML document instances’ data to OWL
instances according to the generated ontologies. Generated
ontologies and corresponding XML Schemas will be derived
automaticly from designed domain ontologies using XSLT
transformations. These scripts will be evolved realizing the
model-driven development of generated ontologies and
underlying XML Schemas associated with the domain
ontologies.

REFERENCES

[1] Extensible Markup Language (XML) 1.0 (fifth edition) - W3C

recommendation 26 November 2008, http://www.w3.org/TR/2008/REC-
xml-20081126/.

[2] XML Schema part 0: primer second edition - W3C recommendation 28
October 2004, http://www.w3.org/TR/2004/REC-xmlschema-0-
20041028/.

[3] Linked Data, http://linkeddata.org.

[4] The XML data model, http://www.w3.org/XML/Datamodel.html.

[5] Resource Description Framework (RDF): concepts and abstract syntax,
http://www.w3.org/TR/2002/WD-rdf-concepts-20021108/.

[6] XML Schema part 1: structures second edition – W3C recommendation
28 October 2004, http://www.w3.org/TR/xmlschema-1/.

[7] M.C.A. Klein, “Interpreting XML documents via an RDF Schema
ontology,” in 13th International Workshop Database and Expert
Systems Applications, Aix-en-Provence, 2002.

[8] S. Battle, “Gloze: XML to RDF and back again,” in 1st Jena User Conf.,
Bristol, 2006.

[9] G. Reif, H. Gall, and M. Jazayeri, “WEESA - web engineering for
Semantic Web applications,” in 14th World Wide Web Conf., Chiba,
2005.

[10] SWRL: a Semantic Web Rule Language combining OWL and RuleML,
http://www.w3.org/Submission/SWRL/.

[11] M.J. O'Connor and A.K. Das, “Semantic reasoning with XML-based
biomedical information models,” in 13th World Congr. Medical
Informatics, Cape Town, 2010.

[12] N. Karlund, A. Moller, and M.I. Schwartzbach, “DSD: a schema
language for XML,” in ACM SIGSOFT Workshop Formal Methods in
Software Practice, 2000.

[13] J. Clark, J. Cowan, M. Fitzgerald, J. Kawaguchi, J. Lubell, M. Murata,
N. Walsh, and D. Webber, “Information technology – document schema
definition language (DSDL) – part 2: regular-grammar-based
validation,” – RELAX NG. ISO/IEC 19757-2:2003(E), 2003.

[14] R. Volz, D. Oberle, S. Staab, and R. Studer, “OntoLiFT Prototype –
WonderWeb: ontology infrastructure for the Semantic Web,” Karlsruhe,
2003.

[15] M. Murata, D. Lee, M. Mani, and K. Kawaguchi, “Taxonomy of XML
schema languages using formal language theory,” in ACM Transactions
Internet Technology, vol. 5, New York, 2005.

[16] N. Anicic, N. Ivezic, and Z. Marjanovic, “Mapping XML Schema to
OWL,” in Enterprise Interoperability, Part V, Springer, Berlin, 2007,
pp. 243-252.

[17] M. Dell’Erba, O. Fodor, F. Ricci, and H. Werthner, “Harmonise: a
solution for data interoperability,” in Proc. 2nd IFIP Conf. E-Commerce,
E-Business, E-Government I3E, 2002.

[18] M.J. O’Connor, A.K. Das, “Acquiring OWL ontologies from XML
documents,” in Proc. 6th Int. Conf. Knowledge Capture, New York
2011.

[19] OWL 2 Web Ontology Language Manchester Syntax,
http://www.w3.org/TR/owl2-manchester-syntax/.

[20] XML Path Language (XPath) 2.0 (second edition),
http://www.w3.org/TR/xpath20/.

[21] M. Ferdinand, C. Zirpins, and D. Trastour, “Lifting XML Schema to
OWL,” in Web Engineering - 4th Int. Conf., Munich, 2004.

[22] N. Kobeissy, M.G. Genet, and D. Zeghlache, “Mapping XML to OWL
for seamless information retrieval in context-aware environments,” in
Int. Conf. Pervasive Services, Istanbul, 2007.

[23] R. Tous, R. Garcia, E. Rodriguez, and J. Delgado, “Architecture of a
semantic XPath processor. Application to digital rights management,” in
6th E-Commerce and Web Technologies, Copenhagen, 2005.

[24] H. Bohring, S. Auer, “Mapping XML to OWL Ontologies,” in Leipziger
Informatik Tage, vol. 72, Leipzig, 2005.

